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A CHARACTERIZATION OF PRIME SUBMODULES OF

AN INJECTIVE MODULE OVER A NOETHERIAN RING

Reza Nekooei and Zahra Pourshafiey

Abstract. In this paper, we give a characterization of prime submodules

of an injective module over a Noetherian ring.

0. Introduction

Throughout this paper all rings are commutative with identity and all mod-
ules are unitary. Let M be an R-module. We denote a (proper) submodule
N of M , by (N � M) N ≤ M . A proper submodule P of an R-module M
is called prime, if rm ∈ P for some r ∈ R and m ∈ M implies m ∈ P or
r ∈ (P : M), where (P : M) = {r ∈ R | rM ⊆ P}. If P is a prime submodule
of an R-module M , then (P : M) is a prime ideal of R. The set of all prime
submodules of an R-module M is denoted by Spec(M). An R-module M is
injective if for every R-module monomorphism f : N −→ N ′ and for every
R-module homomorphism g : N −→ M , there exists an R-module homomor-
phism h : N ′ −→ M such that hf = g. Let N ⊆ M be R-modules. We
say that M is an essential extension of N , if for any nonzero R-submodue U
of M one has U ∩ N 6= 0. Let M be an R-module. An injective module E
is called an injective envelope of M , if E is an essential extension of M and
denoted by E(M). We know that any module M can be embedded into an
injective module; and injective envelope of M is the minimal embedding. In
this case, the corresponding injective module is unique up to isomorphism. An
element x of an R-module M is called torsion, if it has a nonzero annihilator
in R. Let Mt be the set of all torsion elements of M . It is clear that if R
is an integral domain, then Mt is a submodule of M . We say that Mt is the
torsion submodule of M . An R-module M is divisible if for every 0 6= r ∈ R,
rM = M . It is easy to see that every injective module over an integral domain
R is divisible. If M is a divisible R-module, then for every proper submodule
N of M , (N : M) = 0.
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Prime submodules of a module over a commutative ring have been studied by
many authors, see [4,7,11]. Also prime submodules of a finitely generated free
module over a PID were studied in [2, 3]. The authors in [2], described prime
submodules of a finitely generated free module over a UFD and characterized
the prime submodules of a free module of finite rank over a PID. The authors in
[8,9], extended some results obtained in [2] to a Dedekind and valuation domain.
In [10], we have characterized prime submodules of an injective module over a
Noetherian domain. In this paper, we extend our results to Noetherian ring.

1. Prime submodules of E(R
p
)

In this section, we give some results about prime submodules of E(R
p ), when

R is a Noetherian ring and p ∈ Spec(R). Then we characterize all prime
submodules of E(R

p ).

Lemma 1.1. Let R be a Noetherian ring, p ∈ Spec(R) and E = E(R
p ). We

have the following:
(i) annR(E) ⊆ p.
(ii) If P ∈ Spec(E), then p ⊆ (P : E).
(iii) If 0 6= P ∈ Spec(E) and q = (P : E), then R

p ⊆ P or P ∩ R
p = q

p .

(iv) If 0 6= P ∈ Spec(E) and (P : E) = p, then R
p ⊆ P .

(v) If p ∈ Max(R), then Spec(E) = {P � E | pE ⊆ P} and in this case for
every P ∈ Spec(E), we have (P : E) = p.

Proof. (i) Let r ∈ annR(E). So rE = 0 and hence r(R
p ) = 0. Thus r + p =

r(1 + p) = p and so r ∈ p. Therefore annR(E) ⊆ p.
(ii) Let q = (P : E) and p * q. We show that for every x ∈ E, annR(x) * q.

Let y ∈ E and annR(y) ⊆ q. Since R is Noetherian, by [6, Theorem 3.4(1)],
E =

⋃∞
m=1 Am, where Am = {x ∈ E | pmx = 0}. So there exists m ∈ N

such that pmy = 0 and hence pm ⊆ q. Then p ⊆ q, which is a contradiction.
Therefore for every x ∈ E, annR(x) * q. Now Let x ∈ E. So there exists
r ∈ R \ q such that rx = 0 and hence x ∈ P . Now we have P = E, which is a
contradiction. Therefore p ⊆ q.

(iii) Let R
p * P . We show that P ∩ R

p = q
p . Since qE ⊆ P , q(R

p ) ⊆ P and

hence q
p ⊆ P ∩ R

p . Now let P ∩ R
p = a

p for some ideal a of R. If a = p, then

P ∩ R
p = {0} and since E(R

p ) is an essential extension of R
p , P = 0, which is a

contradiction. Thus a 6= p. Let r ∈ a \ p. So r + p = r(1 + p) ∈ P and since
1 + p /∈ P , we have r ∈ q. Therefore P ∩ R

p = q
p .

(iv) It follows by part (iii).
(v) Let P ∈ Spec(E). By part (ii), p ⊆ (P : E) and hence pE ⊆ P .

Conversely, let P � E and pE ⊆ P . Then p ⊆ (P : E) 6= R. Since p ∈ Max(R),
we have (P : E) = p. Therefore P ∈ Spec(E). �
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Let R be a ring, p ∈ Spec(R), M be an R-module and N ≤ M . Lu in [5],
defined the saturation of N with respect to p by Sp(N) = {x ∈ M | sx ∈ N
for some s ∈ R \ p}.

Proposition 1.2. Let R be a Noetherian ring, p ∈ Spec(R) and E = E(R
p ).

Then
(i) Sp(0) = {0}, where {0} is the zero submodule of E.
(ii) annR(E) = p if and only if {0} ∈ Spec(E).

Proof. (i) Let Sp(0) ∩ R
p = a

p , where a is an ideal of R. Suppose that a 6= p

and choose r ∈ a \ p. So r + p ∈ Sp(0) and hence there exists s ∈ R \ p such
that sr + p = s(r + p) = p. Then sr ∈ p and hence r ∈ p or s ∈ p, which is a
contradiction. Therefore a = p. Thus Sp(0) ∩ R

p = {0} and since E(R
p ) is an

essential extension of R
p , Sp(0) = {0}.

(ii) Let annR(E) = p. Suppose that 0 6= x ∈ E, r ∈ R such that rx = 0.
If r ∈ R \ p, by part (i), we have x ∈ Sp(0) = {0}, which is a contradiction.
So r ∈ p and hence {0} ∈ Spec(E). Conversely, let {0} ∈ Spec(E). By
Lemma 1.1, parts (i) and (ii), we have p ⊆ (0 : E) = annR(E) ⊆ p and hence
annR(E) = p. �

In [10, Theorem 2.6], the authors prove that, if R is a Noetherian domain
with quotient filed K and M is an injective R-module, then

(i) M = Mt ⊕N , where N ' ⊕i∈IK for some index set I.
(ii) Spec(M) = ∅ or Spec(M) = {Mt ⊕D | D � N, D ' ⊕j∈JK for some

index set J}.

Proposition 1.3. Let R be a Noetherian ring, p ∈ Spec(R), E = E(R
p ) and

annR(E) = p. Let K be the quotient field of R
p . We have:

(i) E ' ⊕i∈IK for some index set I.
(ii) Spec(E) = {P � E | P ' ⊕j∈JK for some index set J}.
(iii) If P ∈ Spec(E), then (P : E) = p.

Proof. (i) If annR(E) = p, then E is an R
p -module. Since E is an injective

R-module, by the Baer’s Criterion it is easy to show that E is an injective
R
p -module. Since Et = Sp(0) as R

p -module, then by Proposition 1.2(i), Et = 0.

Now by [10, Theorem 2.6(i)], E ' ⊕i∈IK, for some index set I.
(ii) It follows by part (i) and [10, Theorem 2.6(ii)].
(iii) Since E is an injective R

p -module, E is a divisible R
p -module and hence

(P :R/p E) = 0. So (P :R E) = p. �

For the characterization of prime submodules of E = E(R
p ), we need the

following lemma.

Lemma 1.4. Let R be a Noetherian ring, p ∈ Spec(R) and E = E(R
p ). If

s ∈ R \ p, then the R-homomorphism fs : E −→ E defined by x 7→ sx is an
automorphism of E.
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Proof. See [6, Lemma 3.2(2)]. �

Theorem 1.5. Let R be a Noetherian ring, p ∈ Spec(R) and E = E(R
p ). Then

Spec(E) = {P � E | p ⊆ (P : E) = q ∈ Spec(R) and E
P is a K-module, where

K is the quotient field of R
q }.

Proof. Let Σ = {P � E | p ⊆ (P : E) = q ∈ Spec(R) and E
P is a K-module,

where K is the quotient field of R
q }. We show that Spec(E) = Σ. Let P ∈ Σ.

Since every proper submodule of a vector space is {0}-prime, {P} is a {0}-prime
submodule of K-vector space E

P . So P is a {0}-prime submodule of R
q -module

E
P and hence P is a q-prime submodule of R-module E. Thus Σ ⊆ Spec(E).
Conversely, let P ∈ Spec(E). By Lemma 1.1(ii), p ⊆ (P : E) = q. Since
qE ⊆ P , E

P is an R
q -module. Let K be the quotient field of R

q . For every

r ∈ R, s ∈ R \ q and x ∈ E, we put r = r + q, s = s + q and x = x + P . By
Lemma 1.4, for every s ∈ R \ q and x ∈ E there exists a unique y ∈ E such
that sy = x. Now we define the map K × E

P −→
E
P by r

s . x = ry, where

sy = x. We show that this map is well-defined. Let r
s = r′

s′
, x = x′, where

sy = x and s′y′ = x′. So rs′ − sr′ ∈ q, x − x′ ∈ P and hence sy − s′y′ ∈ P .
We prove that ry − r′y′ ∈ P . Since rr′(sy − s′y′) ∈ P , hence rr′sy − rr′s′y′ =

rr′sy − r′
2
sy′ + r′

2
sy′ − rr′s′y′ = r′s(ry − r′y′) + (r′s − rs′)r′y′ ∈ P . But

r′s− rs′ ∈ q and qE ⊆ P , hence (r′s− rs′)r′y′ ∈ P . Thus r′s(ry − r′y′) ∈ P .
If r′ ∈ q, then r ∈ q and we have ry− r′y′ ∈ P . Let r′ /∈ q. Since r′s /∈ q and P
is a q-prime submodule, ry − r′y′ ∈ P . So E

P is a K-module and hence P ∈ Σ.
Therefore Spec(E) = Σ. �

Corollary 1.6. Let R be a Noetherian ring, p ∈ Spec(R), E = E(R
p ). Suppose

that
√

annR(E) = p. Then there exists m ∈ N such that Am = {x ∈ E | pmx =
0} ∈ Spec(E) and (Am : E) = p.

Proof. Since R is a Noetherian ring and
√

annR(E) = p, there exists n ∈ N
such that pn ⊆ ann(E) and pn−1 * ann(E). Put m = n − 1. By [6, Theorem

3.4(4)], we have E
Am

is a K-module, where K is the quotient field of R
p . So by

the first part of the proof of Theorem 1.5, we have Am is a p-prime submodule
of E. �

The following examples show that the assumptions of Corollary 1.6, are
satisfied in both cases, that R is an integral domain or it is not.

Example 1.7. Let R = Z and p = (0). We have E(R
p ) = Q. Then√

annZ(E(
R

p
)) =

√
(0) = (0) = p.

Example 1.8. Let R = Z6 and p = 〈2〉. Clearly R
p ' Z2. We show that

EZ6
(Z2) = Z2. We know that EZ(Z2) ' Z2∞ and HomZ(Z6,Z2∞) is an injective
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Z6-module. It is easy to see that HomZ(Z6,Z2∞) ' Z2. Then EZ6
(Z2) = Z2.

Now we have√
annZ6

(EZ6
(
R

p
)) =

√
annZ6

(EZ6
(Z2))

=
√

annZ6
(Z2) =

√
〈2〉 = 〈2〉 = p.

2. Prime submodules of an injective module over a Noetherian ring

In this section we characterize the prime submodules of an injective module
over a Noetherian ring R.

Proposition 2.1. Let R be a Noetherian ring, p ∈ Spec(R) and M be an
injective R-module such that p ⊆ annR(M). Let K be the quotient field of R

p .

We have:
(i) M = Sp(0)⊕N such that N '

⊕
i∈I K for some index set I.

(ii) Spec(M) = ∅ or Spec(M) = {Sp(0)⊕D | D � N and D '
⊕

j∈J K for

some index set J}.
(iii) If P ∈ Spec(M), then (P : M) = p.

Proof. Since p ⊆ annR(M), M is an R
p - module and we have Mt = Sp(0) as

R
p -module. Now the proof is similar to the proof of Proposition 1.3. �

Remark 2.2. Let R be a Noetherian ring, p ∈ Spec(R) and M be an injective
R-module. We put M(p) =

⊕
i∈I E(R

p ) such that the number of indecompos-

able summands in the decomposition of M(p) equals dimk(p)HomRp
(k(p),Mp),

where k(p) =
Rp

pRp
. Let {pi | i ∈ Ω} ⊆ Spec(R) be the set of all prime ideals

p of R such that dimk(p)HomRp
(k(p),Mp) 6= 0. By [1, Theorem 3.2.8], we

have M '
⊕

i∈Ω M(pi). It is easy to show that there exist submodules Ni of
M(i ∈ Ω) such that M =

⊕
i∈Ω Ni and for every i ∈ Ω, Ni 'M(pi).

Lemma 2.3. With the notation as Remark 2.2, we have the following:
(i) If P ∈ Spec(M(p)), then p ⊆ (P : M(p)).
(ii) If p ∈Max(R), then Spec(M(p)) = {P �M(p) | pM(p) ⊆ P}.

Proof. (i) By Remark 2.2, M(p) =
⊕

i∈I E(R
p ). Let j ∈ I and Bj =

⊕
i∈I Ai

such that Aj = E(R
p ) and for every i ∈ I \ {j}, Ai = 0. We have M(p) =⊕

i∈I Bi. Let P ∈ Spec(M(p)) and Qi = P
⋂
Bi(i ∈ I). Then Qi = Bi or

Qi ∈ Spec(Bi). Since Bi ' E(R
p )(i ∈ Ω), by Lemma 1.1(ii), for every i ∈ I, we

have p ⊆ (Qi : Bi). So
⊕

i∈I Qi ⊆ P implies that p ⊆ (
⊕

i∈I Qi : M(p)) ⊆ (P :
M(p)).

(ii) The proof is similar to the proof of Lemma 1.1(v). �

In the following result, we give a charactrization of prime submodules of
injective modules over Artinian rings.
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Proposition 2.4. Let R be an Artinian ring. Let M be an injective R-module
and M =

⊕
i∈Ω Ni be as in Remark 2.2. Then

Spec(M) = {P �M |P =
⊕
i∈Ω

Pi such that for every i ∈ Ω, Pi ≤ Ni and

there exists a unique j ∈ Ω such that pjNj ⊆ Pj 6= Nj and

for every i ∈ Ω \ {j}, Pi = Ni}.

Proof. Let Σ = {P �M | P =
⊕

i∈Ω Pi such that for every i ∈ Ω, Pi ≤ Ni and
there exists a unique j ∈ Ω such that pjNj ⊆ Pj 6= Nj and for every i ∈ Ω\{j},
Pi = Ni}. We show that Spec(M) = Σ. Let P ∈ Σ. So P =

⊕
i∈Ω Pi such

that for every i ∈ Ω, Pi ≤ Ni and there exists a unique j ∈ Ω such that
pjNj ⊆ Pj 6= Nj and for every i ∈ Ω \ {j}, Pi = Ni. Since Nj ' M(pj), by
Lemma 2.3(ii), Pj ∈ Spec(Nj). It is easy to see that (P : M) = pj ∈ Max(R)
and hence P ∈ Spec(M). Conversely, let P ∈ Spec(M) and for every i ∈ Ω,
Pi = P

⋂
Ni. We prove that P =

⊕
i∈Ω Pi. Assume that Ω is a finite set

and |Ω| = n. By induction on n, we prove that P =
⊕n

i=1 Pi. Let n = 2.
Then M = N1 ⊕ N2. Clearly P1 ⊕ P2 ⊆ P . If P1 = N1 and P2 = N2, then
P = M , which is a contradiction. Assume that N2 6= P2. So (P2 : N2) = p2

and (P1 : N1) = p1 or R. Since p1 6= p2, there exists r ∈ p1 \ p2. Put
y = x1 + x2 ∈ P , where x1 ∈ N1 and x2 ∈ N2. We have ry = rx1 + rx2 ∈ P
and rx1 ∈ P1. So rx2 = ry−rx1 ∈ P

⋂
N2 = P2 and hence x2 ∈ P2. Therefore

x1 = y − x2 ∈ P
⋂
N1 = P1. So y ∈ P1 ⊕ P2 and we have P = P1 ⊕ P2.

Let k ∈ N and suppose the claim is true for n = k − 1. Let M =
⊕k

i=1 Ni.

Clearly
⊕k

i=1 Pi ⊆ P . For every i ∈ {1, . . . , k}, we have (Pi : Ni) = pi or
R. Since P 6= M , there exists i ∈ {1, . . . , k} such that (Pi : Ni) = pi and

there exists j ∈ {1, . . . , k} such that (Pj : Nj) *
⋂k

i=1,i6=j(Pi : Ni). Let

j = 1 and r ∈ (P1 : N1) \
⋂k

i=2(Pi : Ni). Put y = x1 + · · · + xk ∈ P ,
where xi ∈ Ni(1 ≤ i ≤ k). We prove that xi ∈ Pi(1 ≤ i ≤ k). Assume

that N =
⊕k

i=2 Ni and D = P
⋂

N . If D = N , then for every i ∈ {2, . . . , k}
Pi = Ni and hence P1 6= N1. So (P1 : N1) ⊆

⋂k
i=2(Pi : Ni) = R, which is

a contradiction. Therefore D 6= N and hence D ∈ Spec(N). By assumption

of induction, we have D =
⊕k

i=2 Pi. Now put y′ = x2 + · · · + xk. We have
ry = rx1 + · · ·+ rxk ∈ P and rx1 ∈ P1 ⊆ P . So ry′ = ry − rx1 ∈ P

⋂
N = D.

Since r /∈
⋂k

i=2(Pi : Ni), r /∈ (D : N) and thus y′ ∈ D. Thus xi ∈ Pi(2 ≤ i ≤ k)

and hence xi ∈ Pi(1 ≤ i ≤ k). Therefore P =
⊕k

i=1 Pi. Then for every
n ∈ N with |Ω| = n, we have P =

⊕n
i=1 Pi. Now we show that P =

⊕
i∈Ω Pi.

Clearly
⊕

i∈Ω Pi ⊆ P . Let z ∈ P . There exist n ∈ N and i1, . . . , in ∈ Ω

such that z = Σn
j=1xij , where xij ∈ Nij . Assume that, N =

⊕n
j=1 Nij and

D = P
⋂
N . We have D ∈ Spec(N) or D = N . By the above argument, we

have xij ∈ Pij (1 ≤ j ≤ n) and hence z ∈
⊕

i∈Ω Pi. So P =
⊕

i∈Ω Pi. Now let
i, j ∈ Ω, i 6= j, Pi 6= Ni and Pj 6= Nj . Since pi 6= pj , there exist r ∈ pi \ pj ,
xi ∈ Ni \ Pi. Let xj ∈ Pj and t = xi + xj . So rt = rxi + rxj ∈ P . Since
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r /∈ pj , r /∈ (P : M). On the other hand, xi /∈ Pi and hence t /∈ P , which is a
contradiction. Therefore P ∈ Σ and we have Spec(M) = Σ. �

Theorem 2.5. Let R be a Noetherian ring and M be an injective R-module.
Then Spec(M) = {P � M | (P : M) = q ∈ Spec(R) and M

P is a K-module,

where K is the quotient field of R
q }.

Proof. Let Σ = {P � M | (P : M) = q ∈ Spec(R) and M
P is a K-module,

where K is the quotient field of R
q }. We show that Spec(M) = Σ. Let P ∈ Σ.

We have (P : M) = q ∈ Spec(R) and M
P is a K-module. Then {P} is a

{0}-prime submodule of K-vector space M
P . So {P} is a {0}-prime submodule

of R
q -module M

P and hence P is a q-prime submodule of R-module M . Thus

P ∈ Spec(M). Conversely, let P ∈ Spec(M). There exists q ∈ Spec(R) such
that (P : M) = q. By Remark 2.2, there exist an index set Ω and a subset {pi
| i ∈ Ω} of Spec(R) and submodules Ni of M(i ∈ Ω) such that M =

⊕
i∈Ω Ni,

where Ni 'M(pi)(i ∈ Ω). Let Ω′ = {i ∈ Ω | Ni * P}. If Ω′ = ∅, then P = M ,
which is a contradiction. So Ω′ 6= ∅. Put A =

⊕
i∈Ω′ Ni and B =

⊕
i∈Ω\Ω′ Ni,

then M = A ⊕ B. Clearly B ≤ P . Let Pi = P
⋂

Ni (i ∈ Ω′). We have⊕
i∈Ω′ Pi ⊆ P . Since Pi

⋂
B = {0} (i ∈ Ω′), (

⊕
i∈Ω′ Pi) ∩ B = {0} and

hence (
⊕

i∈Ω′ Pi)⊕ B ⊆ P . So by Lemma 2.3(i),
⋂

i∈Ω′ pi ⊆ q. Now we prove

that E
P is a K-module. At first, we define R-homomorphism fs : A −→ A by

fs({xi}i∈Ω′) = {sxi}i∈Ω′ , where s ∈ R \ q. By Lemma 1.4, it is easy to see
that fs is an automorphism of A. For every r ∈ R, s ∈ R \ q, x ∈ M , we
put r = r + q, s = s + q and x = x + P . Let x = a + b, where a ∈ A and
b ∈ B. Since for every a ∈ A, fs is an automorphism of A, there exists a
unique y ∈ A such that sy = a. Now we define the map K × M

P −→
M
P by r

s .

(a + b) = ry, where sy = a. By reasoning similar to the proof of Theorem 1.5,
this map is well-defined and hence M

P is a K-module. Therefore P ∈ Σ and
Spec(M) = Σ. �
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