Bull. Korean Math. Soc. **56** (2019), No. 1, pp. 103–110 https://doi.org/10.4134/BKMS.b180130 pISSN: 1015-8634 / eISSN: 2234-3016

A CHARACTERIZATION OF PRIME SUBMODULES OF AN INJECTIVE MODULE OVER A NOETHERIAN RING

REZA NEKOOEI AND ZAHRA POURSHAFIEY

ABSTRACT. In this paper, we give a characterization of prime submodules of an injective module over a Noetherian ring.

0. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Let M be an R-module. We denote a (proper) submodule N of M, by $(N \lneq M) N \leq M$. A proper submodule P of an R-module M is called prime, if $rm \in P$ for some $r \in R$ and $m \in M$ implies $m \in P$ or $r \in (P: M)$, where $(P: M) = \{r \in R \mid rM \subseteq P\}$. If P is a prime submodule of an *R*-module M, then (P:M) is a prime ideal of *R*. The set of all prime submodules of an R-module M is denoted by Spec(M). An R-module M is injective if for every R-module monomorphism $f\,:\,N\,\longrightarrow\,N'$ and for every *R*-module homomorphism $q: N \longrightarrow M$, there exists an *R*-module homomorphism $h: N' \longrightarrow M$ such that hf = g. Let $N \subseteq M$ be *R*-modules. We say that M is an essential extension of N, if for any nonzero R-submodue Uof M one has $U \cap N \neq 0$. Let M be an R-module. An injective module E is called an injective envelope of M, if E is an essential extension of M and denoted by E(M). We know that any module M can be embedded into an injective module; and injective envelope of M is the minimal embedding. In this case, the corresponding injective module is unique up to isomorphism. An element x of an R-module M is called torsion, if it has a nonzero annihilator in R. Let M_t be the set of all torsion elements of M. It is clear that if R is an integral domain, then M_t is a submodule of M. We say that M_t is the torsion submodule of M. An R-module M is divisible if for every $0 \neq r \in R$, rM = M. It is easy to see that every injective module over an integral domain R is divisible. If M is a divisible R-module, then for every proper submodule N of M, (N:M) = 0.

©2019 Korean Mathematical Society

103

Received February 11, 2018; Revised June 26, 2018; Accepted August 16, 2018.

²⁰¹⁰ Mathematics Subject Classification. 13C11, 13C99.

Key words and phrases. injective modules, injective envelopes, prime submodules.

Prime submodules of a module over a commutative ring have been studied by many authors, see [4,7,11]. Also prime submodules of a finitely generated free module over a PID were studied in [2,3]. The authors in [2], described prime submodules of a finitely generated free module over a UFD and characterized the prime submodules of a free module of finite rank over a PID. The authors in [8,9], extended some results obtained in [2] to a Dedekind and valuation domain. In [10], we have characterized prime submodules of an injective module over a Noetherian domain. In this paper, we extend our results to Noetherian ring.

1. Prime submodules of $E(\frac{R}{n})$

In this section, we give some results about prime submodules of $E(\frac{R}{p})$, when R is a Noetherian ring and $\mathfrak{p} \in \operatorname{Spec}(R)$. Then we characterize all prime submodules of $E(\frac{R}{n})$.

Lemma 1.1. Let R be a Noetherian ring, $\mathfrak{p} \in Spec(R)$ and $E = E(\frac{R}{\mathfrak{p}})$. We have the following:

(i) $ann_R(E) \subseteq \mathfrak{p}$.

(ii) If $P \in Spec(E)$, then $\mathfrak{p} \subseteq (P:E)$.

(iii) If $0 \neq P \in Spec(E)$ and $\mathfrak{q} = (P:E)$, then $\frac{R}{\mathfrak{p}} \subseteq P$ or $P \cap \frac{R}{\mathfrak{p}} = \frac{\mathfrak{q}}{\mathfrak{p}}$.

(iii) If $0 \neq P \in Spec(E)$ and $(P:E) = \mathfrak{p}$, then $\frac{R}{\mathfrak{p}} \subseteq P$. (iv) If $\mathfrak{p} \in Max(R)$, then $Spec(E) = \{P \lneq E \mid \mathfrak{p}E \subseteq P\}$ and in this case for every $P \in Spec(E)$, we have $(P:E) = \mathfrak{p}$.

Proof. (i) Let $r \in \operatorname{ann}_R(E)$. So rE = 0 and hence $r(\frac{R}{\mathfrak{p}}) = 0$. Thus $r + \mathfrak{p} =$ $r(1 + \mathfrak{p}) = \mathfrak{p}$ and so $r \in \mathfrak{p}$. Therefore $\operatorname{ann}_R(E) \subseteq \mathfrak{p}$.

(ii) Let $\mathfrak{q} = (P:E)$ and $\mathfrak{p} \not\subseteq \mathfrak{q}$. We show that for every $x \in E$, $\operatorname{ann}_R(x) \not\subseteq \mathfrak{q}$. Let $y \in E$ and $\operatorname{ann}_R(y) \subseteq \mathfrak{q}$. Since R is Noetherian, by [6, Theorem 3.4(1)], $E = \bigcup_{m=1}^{\infty} A_m$, where $A_m = \{x \in E \mid \mathfrak{p}^m x = 0\}$. So there exists $m \in \mathbb{N}$ such that $\mathfrak{p}^m y = 0$ and hence $\mathfrak{p}^m \subseteq \mathfrak{q}$. Then $\mathfrak{p} \subseteq \mathfrak{q}$, which is a contradiction. Therefore for every $x \in E$, $\operatorname{ann}_R(x) \nsubseteq \mathfrak{q}$. Now Let $x \in E$. So there exists $r \in R \setminus \mathfrak{q}$ such that rx = 0 and hence $x \in P$. Now we have P = E, which is a contradiction. Therefore $\mathfrak{p}\subseteq\mathfrak{q}.$

(iii) Let $\frac{R}{\mathfrak{p}} \notin P$. We show that $P \cap \frac{R}{\mathfrak{p}} = \frac{\mathfrak{q}}{\mathfrak{p}}$. Since $\mathfrak{q}E \subseteq P$, $\mathfrak{q}(\frac{R}{\mathfrak{p}}) \subseteq P$ and hence $\frac{\mathfrak{q}}{\mathfrak{p}} \subseteq P \cap \frac{R}{\mathfrak{p}}$. Now let $P \cap \frac{R}{\mathfrak{p}} = \frac{\mathfrak{a}}{\mathfrak{p}}$ for some ideal \mathfrak{a} of R. If $\mathfrak{a} = \mathfrak{p}$, then $P \cap \frac{R}{\mathfrak{p}} = \{0\}$ and since $E(\frac{R}{\mathfrak{p}})$ is an essential extension of $\frac{R}{\mathfrak{p}}$, P = 0, which is a contradiction. Thus $\mathfrak{a} \neq \mathfrak{p}$. Let $r \in \mathfrak{a} \setminus \mathfrak{p}$. So $r + \mathfrak{p} = r(1 + \mathfrak{p}) \in P$ and since $1 + \mathfrak{p} \notin P$, we have $r \in \mathfrak{q}$. Therefore $P \cap \frac{R}{\mathfrak{p}} = \frac{\mathfrak{q}}{\mathfrak{p}}$.

(iv) It follows by part (iii).

(v) Let $P \in \text{Spec}(E)$. By part (ii), $\mathfrak{p} \subseteq (P : E)$ and hence $\mathfrak{p}E \subseteq P$. Conversely, let $P \lneq E$ and $\mathfrak{p} E \subseteq P$. Then $\mathfrak{p} \subseteq (P : E) \neq R$. Since $\mathfrak{p} \in Max(R)$, we have $(P: E) = \mathfrak{p}$. Therefore $P \in \operatorname{Spec}(E)$. \square

Let R be a ring, $\mathfrak{p} \in \operatorname{Spec}(R)$, M be an R-module and $N \leq M$. Lu in [5], defined the saturation of N with respect to \mathfrak{p} by $S_{\mathfrak{p}}(N) = \{x \in M \mid sx \in N \text{ for some } s \in R \setminus \mathfrak{p}\}.$

Proposition 1.2. Let R be a Noetherian ring, $\mathfrak{p} \in Spec(R)$ and $E = E(\frac{R}{\mathfrak{p}})$. Then

(i) $S_{\mathfrak{p}}(0) = \{0\}$, where $\{0\}$ is the zero submodule of E.

(ii) $ann_R(E) = \mathfrak{p}$ if and only if $\{0\} \in Spec(E)$.

Proof. (i) Let $S_{\mathfrak{p}}(0) \cap \frac{R}{\mathfrak{p}} = \frac{\mathfrak{a}}{\mathfrak{p}}$, where \mathfrak{a} is an ideal of R. Suppose that $\mathfrak{a} \neq \mathfrak{p}$ and choose $r \in \mathfrak{a} \setminus \mathfrak{p}$. So $r + \mathfrak{p} \in S_{\mathfrak{p}}(0)$ and hence there exists $s \in R \setminus \mathfrak{p}$ such that $sr + \mathfrak{p} = s(r + \mathfrak{p}) = \mathfrak{p}$. Then $sr \in \mathfrak{p}$ and hence $r \in \mathfrak{p}$ or $s \in \mathfrak{p}$, which is a contradiction. Therefore $\mathfrak{a} = \mathfrak{p}$. Thus $S_{\mathfrak{p}}(0) \cap \frac{R}{\mathfrak{p}} = \{0\}$ and since $E(\frac{R}{\mathfrak{p}})$ is an essential extension of $\frac{R}{\mathfrak{p}}$, $S_{\mathfrak{p}}(0) = \{0\}$.

(ii) Let $\operatorname{ann}_R(E) = \mathfrak{p}$. Suppose that $0 \neq x \in E$, $r \in R$ such that rx = 0. If $r \in R \setminus \mathfrak{p}$, by part (i), we have $x \in S_{\mathfrak{p}}(0) = \{0\}$, which is a contradiction. So $r \in \mathfrak{p}$ and hence $\{0\} \in \operatorname{Spec}(E)$. Conversely, let $\{0\} \in \operatorname{Spec}(E)$. By Lemma 1.1, parts (i) and (ii), we have $\mathfrak{p} \subseteq (0 : E) = \operatorname{ann}_R(E) \subseteq \mathfrak{p}$ and hence $\operatorname{ann}_R(E) = \mathfrak{p}$.

In [10, Theorem 2.6], the authors prove that, if R is a Noetherian domain with quotient filed K and M is an injective R-module, then

(i) $M = M_t \oplus N$, where $N \simeq \bigoplus_{i \in I} K$ for some index set I.

(ii) Spec $(M) = \emptyset$ or Spec $(M) = \{M_t \oplus D \mid D \leq N, D \simeq \bigoplus_{j \in J} K$ for some index set $J\}$.

Proposition 1.3. Let R be a Noetherian ring, $\mathfrak{p} \in Spec(R)$, $E = E(\frac{R}{\mathfrak{p}})$ and $ann_R(E) = \mathfrak{p}$. Let K be the quotient field of $\frac{R}{\mathfrak{p}}$. We have:

- (i) $E \simeq \bigoplus_{i \in I} K$ for some index set I.
- (ii) $Spec(E) = \{P \lneq E \mid P \simeq \bigoplus_{j \in J} K \text{ for some index set } J\}.$
- (iii) If $P \in Spec(E)$, then $(P : E) = \mathfrak{p}$.

Proof. (i) If $\operatorname{ann}_R(E) = \mathfrak{p}$, then E is an $\frac{R}{\mathfrak{p}}$ -module. Since E is an injective R-module, by the Baer's Criterion it is easy to show that E is an injective $\frac{R}{\mathfrak{p}}$ -module. Since $E_t = S_{\mathfrak{p}}(0)$ as $\frac{R}{\mathfrak{p}}$ -module, then by Proposition 1.2(i), $E_t = 0$. Now by [10, Theorem 2.6(i)], $E \simeq \bigoplus_{i \in I} K$, for some index set I.

(ii) It follows by part (i) and [10, Theorem 2.6(ii)].

(iii) Since E is an injective $\frac{R}{\mathfrak{p}}$ -module, E is a divisible $\frac{R}{\mathfrak{p}}$ -module and hence $(P:_{R/\mathfrak{p}} E) = 0$. So $(P:_R E) = \mathfrak{p}$.

For the characterization of prime submodules of $E = E(\frac{R}{\mathfrak{p}})$, we need the following lemma.

Lemma 1.4. Let R be a Noetherian ring, $\mathfrak{p} \in Spec(R)$ and $E = E(\frac{R}{\mathfrak{p}})$. If $s \in R \setminus \mathfrak{p}$, then the R-homomorphism $f_s : E \longrightarrow E$ defined by $x \mapsto sx$ is an automorphism of E.

Proof. See [6, Lemma 3.2(2)].

Theorem 1.5. Let R be a Noetherian ring, $\mathfrak{p} \in Spec(R)$ and $E = E(\frac{R}{\mathfrak{p}})$. Then $Spec(E) = \{P \leq E \mid \mathfrak{p} \subseteq (P : E) = \mathfrak{q} \in Spec(R) \text{ and } \frac{E}{P} \text{ is a K-module, where } K \text{ is the quotient field of } \frac{R}{\mathfrak{q}}\}.$

Proof. Let $\Sigma = \{P \lneq E \mid \mathfrak{p} \subseteq (P:E) = \mathfrak{q} \in \operatorname{Spec}(R) \text{ and } \frac{E}{P} \text{ is a } K \text{-module},$ where K is the quotient field of $\frac{R}{q}$. We show that $\text{Spec}(E) = \Sigma$. Let $P \in \Sigma$. Since every proper submodule of a vector space is $\{0\}$ -prime, $\{P\}$ is a $\{0\}$ -prime submodule of K-vector space $\frac{E}{P}$. So P is a {0}-prime submodule of $\frac{R}{q}$ -module $\frac{E}{P}$ and hence P is a \mathfrak{q} -prime submodule of R-module E. Thus $\Sigma \subseteq \operatorname{Spec}(E)$. Conversely, let $P \in \text{Spec}(E)$. By Lemma 1.1(ii), $\mathfrak{p} \subseteq (P : E) = \mathfrak{q}$. Since $\mathfrak{q}E \subseteq P, \frac{E}{P}$ is an $\frac{R}{\mathfrak{q}}$ -module. Let K be the quotient field of $\frac{R}{\mathfrak{q}}$. For every $r \in R, s \in R \setminus \mathfrak{q}$ and $x \in E$, we put $\overline{r} = r + \mathfrak{q}, \overline{s} = s + \mathfrak{q}$ and $\overline{x} = x + P$. By Lemma 1.4, for every $s \in R \setminus \mathfrak{q}$ and $x \in E$ there exists a unique $y \in E$ such that sy = x. Now we define the map $K \times \frac{E}{P} \longrightarrow \frac{E}{P}$ by $\frac{\overline{r}}{\overline{s}}$. $\overline{x} = \overline{ry}$, where sy = x. We show that this map is well-defined. Let $\frac{\overline{r}}{\overline{s}} = \frac{\overline{r'}}{\overline{s'}}, \ \overline{x} = \overline{x'}$, where sy = x and s'y' = x'. So $rs' - sr' \in q$, $x - x' \in P$ and hence $sy - s'y' \in P$. We prove that $ry - r'y' \in P$. Since $rr'(sy - s'y') \in P$, hence rr'sy - rr's'y' = $rr'sy - r'^2sy' + r'^2sy' - rr's'y' = r's(ry - r'y') + (r's - rs')r'y' \in P.$ But $r's - rs' \in \mathfrak{q}$ and $\mathfrak{q}E \subseteq P$, hence $(r's - rs')r'y' \in P.$ Thus $r's(ry - r'y') \in P.$ If $r' \in \mathfrak{q}$, then $r \in \mathfrak{q}$ and we have $ry - r'y' \in P$. Let $r' \notin \mathfrak{q}$. Since $r's \notin \mathfrak{q}$ and P is a q-prime submodule, $ry - r'y' \in P$. So $\frac{E}{P}$ is a K-module and hence $P \in \Sigma$. Therefore $\operatorname{Spec}(E) = \Sigma$. \square

Corollary 1.6. Let R be a Noetherian ring, $\mathfrak{p} \in Spec(R)$, $E = E(\frac{R}{\mathfrak{p}})$. Suppose that $\sqrt{ann_R(E)} = \mathfrak{p}$. Then there exists $m \in \mathbb{N}$ such that $A_m = \{x \in E \mid \mathfrak{p}^m x = 0\} \in Spec(E)$ and $(A_m : E) = \mathfrak{p}$.

Proof. Since R is a Noetherian ring and $\sqrt{\operatorname{ann}_R(E)} = \mathfrak{p}$, there exists $n \in \mathbb{N}$ such that $\mathfrak{p}^n \subseteq \operatorname{ann}(E)$ and $\mathfrak{p}^{n-1} \not\subseteq \operatorname{ann}(E)$. Put m = n-1. By [6, Theorem 3.4(4)], we have $\frac{E}{A_m}$ is a K-module, where K is the quotient field of $\frac{R}{\mathfrak{p}}$. So by the first part of the proof of Theorem 1.5, we have A_m is a \mathfrak{p} -prime submodule of E.

The following examples show that the assumptions of Corollary 1.6, are satisfied in both cases, that R is an integral domain or it is not.

Example 1.7. Let $R = \mathbb{Z}$ and $\mathfrak{p} = (0)$. We have $E(\frac{R}{\mathfrak{p}}) = \mathbb{Q}$. Then

$$\sqrt{\operatorname{ann}_{\mathbb{Z}}(E(\frac{R}{\mathfrak{p}}))} = \sqrt{(0)} = (0) = \mathfrak{p}.$$

Example 1.8. Let $R = \mathbb{Z}_6$ and $\mathfrak{p} = \langle \overline{2} \rangle$. Clearly $\frac{R}{\mathfrak{p}} \simeq \mathbb{Z}_2$. We show that $E_{\mathbb{Z}_6}(\mathbb{Z}_2) = \mathbb{Z}_2$. We know that $E_{\mathbb{Z}}(\mathbb{Z}_2) \simeq \mathbb{Z}_{2^{\infty}}$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_6, \mathbb{Z}_{2^{\infty}})$ is an injective

106

 \mathbb{Z}_6 -module. It is easy to see that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}_6, \mathbb{Z}_{2^{\infty}}) \simeq \mathbb{Z}_2$. Then $E_{\mathbb{Z}_6}(\mathbb{Z}_2) = \mathbb{Z}_2$. Now we have

$$\begin{split} \sqrt{\operatorname{ann}_{\mathbb{Z}_6}(E_{\mathbb{Z}_6}(\frac{R}{\mathfrak{p}}))} &= \sqrt{\operatorname{ann}_{\mathbb{Z}_6}(E_{\mathbb{Z}_6}(\mathbb{Z}_2))} \\ &= \sqrt{\operatorname{ann}_{\mathbb{Z}_6}(\mathbb{Z}_2)} = \sqrt{\langle \overline{2} \rangle} = \langle \overline{2} \rangle = \mathfrak{p}. \end{split}$$

2. Prime submodules of an injective module over a Noetherian ring

In this section we characterize the prime submodules of an injective module over a Noetherian ring R.

Proposition 2.1. Let R be a Noetherian ring, $\mathfrak{p} \in Spec(R)$ and M be an injective R-module such that $\mathfrak{p} \subseteq ann_R(M)$. Let K be the quotient field of $\frac{R}{\mathfrak{p}}$. We have:

(i) $M = S_{\mathfrak{p}}(0) \oplus N$ such that $N \simeq \bigoplus_{i \in I} K$ for some index set I. (ii) $Spec(M) = \emptyset$ or $Spec(M) = \{S_{\mathfrak{p}}(0) \oplus D \mid D \lneq N \text{ and } D \simeq \bigoplus_{j \in J} K$ for some index set J.

(iii) If $P \in Spec(M)$, then $(P:M) = \mathfrak{p}$.

Proof. Since $\mathfrak{p} \subseteq \operatorname{ann}_R(M)$, M is an $\frac{R}{\mathfrak{p}}$ -module and we have $M_t = S_{\mathfrak{p}}(0)$ as $\frac{R}{p}$ -module. Now the proof is similar to the proof of Proposition 1.3.

Remark 2.2. Let R be a Noetherian ring, $\mathfrak{p} \in \operatorname{Spec}(R)$ and M be an injective *R*-module. We put $M(\mathfrak{p}) = \bigoplus_{i \in I} E(\frac{R}{\mathfrak{p}})$ such that the number of indecomposable summands in the decomposition of $M(\mathfrak{p})$ equals $\dim_{k(\mathfrak{p})} \operatorname{Hom}_{R_{\mathfrak{p}}}(k(\mathfrak{p}), M_{\mathfrak{p}})$, where $k(\mathfrak{p}) = \frac{R_{\mathfrak{p}}}{\mathfrak{p}R_{\mathfrak{p}}}$. Let $\{\mathfrak{p}_i \mid i \in \Omega\} \subseteq \operatorname{Spec}(R)$ be the set of all prime ideals \mathfrak{p} of R such that $\dim_{k(\mathfrak{p})} \operatorname{Hom}_{R_{\mathfrak{p}}}(k(\mathfrak{p}), M_{\mathfrak{p}}) \neq 0$. By [1, Theorem 3.2.8], we have $M \simeq \bigoplus_{i \in \Omega} M(\mathfrak{p}_i)$. It is easy to show that there exist submodules N_i of $M(i \in \Omega)$ such that $M = \bigoplus_{i \in \Omega} N_i$ and for every $i \in \Omega$, $N_i \simeq M(\mathfrak{p}_i)$.

Lemma 2.3. With the notation as Remark 2.2, we have the following:

- (i) If $P \in Spec(M(\mathfrak{p}))$, then $\mathfrak{p} \subseteq (P : M(\mathfrak{p}))$.
- (ii) If $\mathfrak{p} \in Max(R)$, then $Spec(M(\mathfrak{p})) = \{P \leq M(\mathfrak{p}) \mid \mathfrak{p}M(\mathfrak{p}) \subseteq P\}$.

Proof. (i) By Remark 2.2, $M(\mathfrak{p}) = \bigoplus_{i \in I} E(\frac{R}{\mathfrak{p}})$. Let $j \in I$ and $B_j = \bigoplus_{i \in I} A_i$ such that $A_j = E(\frac{R}{\mathfrak{p}})$ and for every $i \in I \setminus \{j\}, A_i = 0$. We have $M(\mathfrak{p}) =$ $\bigoplus_{i \in I} B_i$. Let $P \in \operatorname{Spec}(M(\mathfrak{p}))$ and $Q_i = P \bigcap B_i (i \in I)$. Then $Q_i = B_i$ or $Q_i \in \operatorname{Spec}(B_i)$. Since $B_i \simeq E(\frac{R}{\mathfrak{p}}) (i \in \Omega)$, by Lemma 1.1(ii), for every $i \in I$, we have $\mathfrak{p} \subseteq (Q_i : B_i)$. So $\bigoplus_{i \in I} Q_i \subseteq P$ implies that $\mathfrak{p} \subseteq (\bigoplus_{i \in I} Q_i : M(\mathfrak{p})) \subseteq (P : \mathbb{P})$ $M(\mathfrak{p})).$

(ii) The proof is similar to the proof of Lemma 1.1(v).

 \square

In the following result, we give a charactrization of prime submodules of injective modules over Artinian rings.

Proposition 2.4. Let R be an Artinian ring. Let M be an injective R-module and $M = \bigoplus_{i \in \Omega} N_i$ be as in Remark 2.2. Then

$$Spec(M) = \{ P \lneq M \mid P = \bigoplus_{i \in \Omega} P_i \text{ such that for every } i \in \Omega, P_i \leq N_i \text{ and}$$

there exists a unique $j \in \Omega$ such that $\mathfrak{p}_j N_j \subseteq P_j \neq N_j$ and
for every $i \in \Omega \setminus \{j\}, P_i = N_i\}.$

Proof. Let $\Sigma = \{P \neq M \mid P = \bigoplus_{i \in \Omega} P_i \text{ such that for every } i \in \Omega, P_i \leq N_i \text{ and } i \in \Omega\}$ there exists a unique $j \in \Omega$ such that $\mathfrak{p}_i N_i \subseteq P_i \neq N_i$ and for every $i \in \Omega \setminus \{j\}$, $P_i = N_i$. We show that $\operatorname{Spec}(M) = \Sigma$. Let $P \in \Sigma$. So $P = \bigoplus_{i \in \Omega} P_i$ such that for every $i \in \Omega$, $P_i \leq N_i$ and there exists a unique $j \in \Omega$ such that $\mathfrak{p}_j N_j \subseteq P_j \neq N_j$ and for every $i \in \Omega \setminus \{j\}, P_i = N_i$. Since $N_j \simeq M(\mathfrak{p}_j)$, by Lemma 2.3(ii), $P_j \in \text{Spec}(N_j)$. It is easy to see that $(P:M) = \mathfrak{p}_j \in \text{Max}(R)$ and hence $P \in \operatorname{Spec}(M)$. Conversely, let $P \in \operatorname{Spec}(M)$ and for every $i \in \Omega$, $P_i = P \bigcap N_i$. We prove that $P = \bigoplus_{i \in \Omega} P_i$. Assume that Ω is a finite set and $|\Omega| = n$. By induction on *n*, we prove that $P = \bigoplus_{i=1}^{n} P_i$. Let n = 2. Then $M = N_1 \oplus N_2$. Clearly $P_1 \oplus P_2 \subseteq P$. If $P_1 = N_1$ and $P_2 = N_2$, then P = M, which is a contradiction. Assume that $N_2 \neq P_2$. So $(P_2 : N_2) = \mathfrak{p}_2$ and $(P_1 : N_1) = \mathfrak{p}_1$ or R. Since $\mathfrak{p}_1 \neq \mathfrak{p}_2$, there exists $r \in \mathfrak{p}_1 \setminus \mathfrak{p}_2$. Put $y = x_1 + x_2 \in P$, where $x_1 \in N_1$ and $x_2 \in N_2$. We have $ry = rx_1 + rx_2 \in P$ and $rx_1 \in P_1$. So $rx_2 = ry - rx_1 \in P \cap N_2 = P_2$ and hence $x_2 \in P_2$. Therefore $x_1 = y - x_2 \in P \bigcap N_1 = P_1$. So $y \in P_1 \oplus P_2$ and we have $P = P_1 \oplus P_2$. Let $k \in \mathbb{N}$ and suppose the claim is true for n = k - 1. Let $M = \bigoplus_{i=1}^{k} N_i$. Clearly $\bigoplus_{i=1}^{k} P_i \subseteq P$. For every $i \in \{1, \ldots, k\}$, we have $(P_i : N_i) = \mathfrak{p}_i$ or R. Since $P \neq M$, there exists $i \in \{1, \ldots, k\}$ such that $(P_i : N_i) = \mathfrak{p}_i$ and there exists $j \in \{1, \ldots, k\}$ such that $(P_j : N_j) \nsubseteq \bigcap_{i=1, i \neq j}^k (P_i : N_i)$. Let j = 1 and $r \in (P_1 : N_1) \setminus \bigcap_{i=2}^k (P_i : N_i)$. Put $y = x_1 + \dots + x_k \in P$, where $x_i \in N_i (1 \le i \le k)$. We prove that $x_i \in P_i (1 \le i \le k)$. Assume that $N = \bigoplus_{i=2}^{k} N_i$ and $D = P \cap N$. If D = N, then for every $i \in \{2, \ldots, k\}$ $P_i = N_i$ and hence $P_1 \neq N_1$. So $(P_1 : N_1) \subseteq \bigcap_{i=2}^k (P_i : N_i) = R$, which is a contradiction. Therefore $D \neq N$ and hence $D \in \operatorname{Spec}(N)$. By assumption of induction, we have $D = \bigoplus_{i=2}^{k} P_i$. Now put $y' = x_2 + \cdots + x_k$. We have $ry = rx_1 + \cdots + rx_k \in P$ and $rx_1 \in P_1 \subseteq P$. So $ry' = ry - rx_1 \in P \cap N = D$. Since $r \notin \bigcap_{i=2}^{k} (P_i : N_i), r \notin (D : N)$ and thus $y' \in D$. Thus $x_i \in P_i (2 \le i \le k)$ and hence $x_i \in P_i (1 \leq i \leq k)$. Therefore $P = \bigoplus_{i=1}^k P_i$. Then for every $n \in \mathbb{N}$ with $|\Omega| = n$, we have $P = \bigoplus_{i=1}^{n} P_i$. Now we show that $P = \bigoplus_{i \in \Omega} P_i$. Clearly $\bigoplus_{i \in \Omega} P_i \subseteq P$. Let $z \in P$. There exist $n \in \mathbb{N}$ and $i_1, \ldots, i_n \in \Omega$ such that $z = \sum_{j=1}^{n} x_{i_j}$, where $x_{i_j} \in N_{i_j}$. Assume that, $N = \bigoplus_{j=1}^{n} N_{i_j}$ and $D = P \cap N$. We have $D \in \operatorname{Spec}(N)$ or D = N. By the above argument, we have $x_{i_j} \in P_{i_j} (1 \le j \le n)$ and hence $z \in \bigoplus_{i \in \Omega} P_i$. So $P = \bigoplus_{i \in \Omega} P_i$. Now let $i, j \in \Omega, i \neq j, P_i \neq N_i \text{ and } P_j \neq N_j.$ Since $\mathfrak{p}_i \neq \mathfrak{p}_j$, there exist $r \in \mathfrak{p}_i \setminus \mathfrak{p}_j$, $x_i \in N_i \setminus P_i$. Let $x_j \in P_j$ and $t = x_i + x_j$. So $rt = rx_i + rx_j \in P$. Since

 $r \notin \mathfrak{p}_j, r \notin (P:M)$. On the other hand, $x_i \notin P_i$ and hence $t \notin P$, which is a contradiction. Therefore $P \in \Sigma$ and we have $\operatorname{Spec}(M) = \Sigma$.

Theorem 2.5. Let R be a Noetherian ring and M be an injective R-module. Then $Spec(M) = \{P \leq M \mid (P:M) = \mathfrak{q} \in Spec(R) \text{ and } \frac{M}{P} \text{ is a K-module,} where K is the quotient field of <math>\frac{R}{\mathfrak{q}}\}.$

Proof. Let $\Sigma = \{P \leq M \mid (P:M) = \mathfrak{q} \in Spec(R) \text{ and } \frac{M}{P} \text{ is a K-module,} \}$ where K is the quotient field of $\frac{R}{q}$. We show that $\text{Spec}(M) = \Sigma$. Let $P \in \Sigma$. We have $(P : M) = \mathfrak{q} \in \operatorname{Spec}(R)$ and $\frac{M}{P}$ is a K-module. Then $\{P\}$ is a $\{0\}$ -prime submodule of K-vector space $\frac{M}{P}$. So $\{P\}$ is a $\{0\}$ -prime submodule of $\frac{R}{q}$ -module $\frac{M}{P}$ and hence P is a q-prime submodule of R-module M. Thus $P \in \operatorname{Spec}(M)$. Conversely, let $P \in \operatorname{Spec}(M)$. There exists $\mathfrak{q} \in \operatorname{Spec}(R)$ such that $(P:M) = \mathfrak{q}$. By Remark 2.2, there exist an index set Ω and a subset $\{\mathfrak{p}_i\}$ $|i \in \Omega\}$ of Spec(R) and submodules N_i of $M(i \in \Omega)$ such that $M = \bigoplus_{i \in \Omega} N_i$, where $N_i \simeq M(\mathfrak{p}_i)(i \in \Omega)$. Let $\Omega' = \{i \in \Omega \mid N_i \nsubseteq P\}$. If $\Omega' = \emptyset$, then P = M, which is a contradiction. So $\Omega' \neq \emptyset$. Put $A = \bigoplus_{i \in \Omega'} N_i$ and $B = \bigoplus_{i \in \Omega \setminus \Omega'} N_i$, then $M = A \oplus B$. Clearly $B \leq P$. Let $P_i = P \bigcap N_i$ $(i \in \Omega')$. We have $\bigoplus_{i \in \Omega'} P_i \subseteq P$. Since $P_i \bigcap B = \{0\}$ $(i \in \Omega')$, $(\bigoplus_{i \in \Omega'} P_i) \cap B = \{0\}$ and hence $(\bigoplus_{i \in \Omega'} P_i) \oplus B \subseteq P$. So by Lemma 2.3(i), $\bigcap_{i \in \Omega'} \mathfrak{p}_i \subseteq \mathfrak{q}$. Now we prove that $\frac{E}{P}$ is a K-module. At first, we define R-homomorphism $f_s: A \longrightarrow A$ by $f_s(\{x_i\}_{i\in\Omega'}) = \{sx_i\}_{i\in\Omega'}$, where $s \in R \setminus \mathfrak{q}$. By Lemma 1.4, it is easy to see that f_s is an automorphism of A. For every $r \in R$, $s \in R \setminus \mathfrak{q}$, $x \in M$, we put $\overline{r} = r + \mathfrak{q}$, $\overline{s} = s + \mathfrak{q}$ and $\overline{x} = x + P$. Let x = a + b, where $a \in A$ and $b \in B$. Since for every $a \in A$, f_s is an automorphism of A, there exists a unique $y \in A$ such that sy = a. Now we define the map $K \times \frac{M}{P} \longrightarrow \frac{M}{P}$ by $\frac{\overline{r}}{\overline{s}}$. $(\overline{a} + \overline{b}) = \overline{ry}$, where sy = a. By reasoning similar to the proof of Theorem 1.5, this map is well-defined and hence $\frac{M}{P}$ is a K-module. Therefore $P \in \Sigma$ and $\operatorname{Spec}(M) = \Sigma.$

Acknowledgments. The authors would like to thank the referee for his/her useful suggestions that improved the presentation of this paper.

References

- W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.
- [2] S. Hedayat and R. Nekooei, Characterization of prime submodules of a finitely generated free module over a PID, Houston J. Math. 31 (2005), no. 1, 75–85.
- [3] _____, Prime and radical submodules of free modules over a PID, Houston J. Math. 32 (2006), no. 2, 355–367.
- [4] C.-P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul. 33 (1984), no. 1, 61–69.
- [5] _____, Saturations of submodules, Comm. Algebra **31** (2003), no. 6, 2655–2673.
- [6] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511-528.
- [7] R. L. McCasland and M. E. Moore, *Prime submodules*, Comm. Algebra 20 (1992), no. 6, 1803–1817.

- [8] F. Mirzaei and R. Nekooei, On prime submodules of a finitely generated free module over a commutative ring, Comm. Algebra 44 (2016), no. 9, 3966–3975.
- [9] _____, Characterization of prime submodules of a free module of finite rank over a valuation domain, J. Korean Math. Soc. 54 (2017), no. 1, 59–68.
- [10] Z. Pourshafiey and R. Nekooei, On prime submodules of an injective module over a Noetherian domain, to appear.
- [11] Y. Tiras and A. Harmanci, and P. F. Smith, A characterization of prime submodules, J. Algebra 212 (1999), no. 2, 743–752.

REZA NEKOOEI DEPARTMENT OF PURE MATHEMATICS FACULTY OF MATHEMATICS AND COMPUTER SHAHID BAHONAR UNIVERSITY OF KERMAN KERMAN, IRAN *Email address*: rnekooei@uk.ac.ir

ZAHRA POURSHAFIEY DEPARTMENT OF PURE MATHEMATICS FACULTY OF MATHEMATICS AND COMPUTER SHAHID BAHONAR UNIVERSITY OF KERMAN KERMAN, IRAN *Email address*: zhpoorshafiee@gmail.com

110