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A CHARACTERIZATION OF PRIME SUBMODULES OF
AN INJECTIVE MODULE OVER A NOETHERIAN RING

REZA NEKOOEI AND ZAHRA POURSHAFIEY

ABSTRACT. In this paper, we give a characterization of prime submodules
of an injective module over a Noetherian ring.

0. Introduction

Throughout this paper all rings are commutative with identity and all mod-
ules are unitary. Let M be an R-module. We denote a (proper) submodule
N of M, by (NS M) N < M. A proper submodule P of an R-module M
is called prime, if rm € P for some r € R and m € M implies m € P or
r € (P: M), where (P: M) ={r e R|rM C P}. If P is a prime submodule
of an R-module M, then (P : M) is a prime ideal of R. The set of all prime
submodules of an R-module M is denoted by Spec(M). An R-module M is
injective if for every R-module monomorphism f : N — N’ and for every
R-module homomorphism g : N — M, there exists an R-module homomor-
phism h : N’ — M such that hf = g. Let N € M be R-modules. We
say that M is an essential extension of NV, if for any nonzero R-submodue U
of M one has U NN # 0. Let M be an R-module. An injective module
is called an injective envelope of M, if E is an essential extension of M and
denoted by E(M). We know that any module M can be embedded into an
injective module; and injective envelope of M is the minimal embedding. In
this case, the corresponding injective module is unique up to isomorphism. An
element x of an R-module M is called torsion, if it has a nonzero annihilator
in R. Let M; be the set of all torsion elements of M. It is clear that if R
is an integral domain, then M; is a submodule of M. We say that M; is the
torsion submodule of M. An R-module M is divisible if for every 0 # r € R,
rM = M. It is easy to see that every injective module over an integral domain
R is divisible. If M is a divisible R-module, then for every proper submodule
Nof M, (N:M)=0.
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Prime submodules of a module over a commutative ring have been studied by
many authors, see [4,7,11]. Also prime submodules of a finitely generated free
module over a PID were studied in [2,3]. The authors in [2], described prime
submodules of a finitely generated free module over a UFD and characterized
the prime submodules of a free module of finite rank over a PID. The authors in
[8,9], extended some results obtained in [2] to a Dedekind and valuation domain.
In [10], we have characterized prime submodules of an injective module over a
Noetherian domain. In this paper, we extend our results to Noetherian ring.

1. Prime submodules of E(%)

In this section, we give some results about prime submodules of E (%), when

R is a Noetherian ring and p € Spec(R). Then we characterize all prime
submodules of E (%)

Lemma 1.1. Let R be a Noetherian ring, p € Spec(R) and E = E(%). We
have the following:
(i) annr(E) C p.
(ii) If P € Spec(E), then p C (P : E).
(iii) If 0 # P € Spec(E) and q = (P : E), then £ C P or PN % = %,
(iv) If 0 # P € Spec(E) and (P : E) =p, then & C P.
(v) If p € Max(R), then Spec(E) ={P < E | pE C P} and in this case for
every P € Spec(E), we have (P : E) =p.

=|ns|n

Proof. (i) Let r € anng(E). So rE = 0 and hence r(%) =0. Thusr+p =
r(1+p) =p and so r € p. Therefore anng(E) C p.

(ii) Let g = (P : E) and p € q. We show that for every x € E, anng(z) € q.
Let y € E and anng(y) C q. Since R is Noetherian, by [6, Theorem 3.4(1)],
E = Jy_, Ap, where A, = {z € E | p™z = 0}. So there exists m € N
such that p™y = 0 and hence p™™ C q. Then p C q, which is a contradiction.
Therefore for every € E, anng(z) € q. Now Let 2 € E. So there exists
r € R\ q such that r& = 0 and hence € P. Now we have P = FE, which is a
contradiction. Therefore p C q.

(iii) Let & ¢ P. We show that PN 4 = 1. Since ¢E C P, q(§}) C P and
hence g CPn %. Now let PN % = % for some ideal a of R. If a = p, then
PN % = {0} and since E(%) is an essential extension of %, P =0, which is a
contradiction. Thus a # p. Let r € a\p. Sor+p =r(1l +p) € P and since
14+ p ¢ P, we have r € q. Therefore P N % = %.

(iv) It follows by part (iii).

(v) Let P € Spec(E). By part (ii), p € (P : E) and hence pE C P.
Conversely, let P < F and pE C P. Thenp C (P : E) # R. Since p € Max(R),
we have (P : F) = p. Therefore P € Spec(E). O
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Let R be a ring, p € Spec(R), M be an R-module and N < M. Lu in [5],
defined the saturation of N with respect to p by Sy(N) ={x € M | st € N
for some s € R\ p}.

Proposition 1.2. Let R be a Noetherian ring, p € Spec(R) and E = E(%).
Then

(i) Sp(0) = {0}, where {0} is the zero submodule of E.

(ii) anng(E) = p if and only if {0} € Spec(E).

Proof. (i) Let Sy(0) N % = %, where a is an ideal of R. Suppose that a # p
and choose r € a\ p. So r+p € S,(0) and hence there exists s € R\ p such
that sr +p = s(r +p) = p. Then sr € p and hence r € p or s € p, which is a
contradiction. Therefore a = p. Thus S,(0) N % = {0} and since E(%) is an
essential extension of %7 Sp(0) = {0}.

(ii) Let anng(E) = p. Suppose that 0 # = € E, r € R such that rx = 0.
If r € R\ p, by part (i), we have z € S,(0) = {0}, which is a contradiction.
So r € p and hence {0} € Spec(E). Conversely, let {0} € Spec(F). By
Lemma 1.1, parts (i) and (ii), we have p C (0 : E) = anng(E) C p and hence
anng(E) = p. O

In [10, Theorem 2.6], the authors prove that, if R is a Noetherian domain
with quotient filed K and M is an injective R-module, then

(i) M = M; ® N, where N ~ @;c; K for some index set I.

(ii) Spec(M) =0 or Spec(M) ={M; & D | D S N, D ~ @;c;K for some
index set J}.

Proposition 1.3. Let R be a Noetherian ring, p € Spec(R), E = E(%) and
anng(E) =p. Let K be the quotient field of %. We have:

(i) E ~ ®;er K for some index set I.

(ii) Spec(E) ={P S E | P~ ®;c;K for some index set J}.

(iii) If P € Spec(E), then (P : E) =p.

Proof. (i) If anng(E) = p, then E is an %—module. Since E is an injective
R-module, by the Baer’s Criterion it is easy to show that E is an injective
%-module. Since Ey = S,(0) as %—module7 then by Proposition 1.2(i), E; = 0.
Now by [10, Theorem 2.6(i)], E ~ @®;ecr K, for some index set I.

(ii) It follows by part (i) and [10, Theorem 2.6(ii)].

(iii) Since F is an injective %—module, E is a divisible %—module and hence
(P:R/p E):O So (PRE):p (|

For the characterization of prime submodules of E = E(%), we need the
following lemma.

Lemma 1.4. Let R be a Noetherian ring, p € Spec(R) and E = E(%). If

s € R\ p, then the R-homomorphism fs : E — E defined by x — sz is an
automorphism of E.
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Proof. See [6, Lemma 3.2(2)]. O

Theorem 1.5. Let R be a Noetherian ring, p € Spec(R) and E = E(%) Then
Spec(E) ={PS E|pC (P:E)=q¢€ Spec(R) and £ is a K-module, where
K is the quotient field of g}.

Proof. Let S ={P S E|pC (P:E)=qé€ Spec(R) and £ is a K-module,
where K is the quotient field of %} We show that Spec(E) = £. Let P € 3.

Since every proper submodule of a vector space is {0}-prime, { P} is a {0}-prime

submodule of K-vector space %. So P is a {0}-prime submodule of £-module

q
% and hence P is a g-prime submodule of R-module E. Thus ¥ C Spec(E).
Conversely, let P € Spec(E). By Lemma 1.1(ii), p € (P : E) = q. Since
qF C P, % is an %—module. Let K be the quotient field of % For every
reR s€eR\qandz € E,weput7=r+q,s=s+qand T =+ P. By
Lemma 1.4, for every s € R\ q and 2 € F there exists a unique y € F such
that sy = z. Now we define the map K x £ — £ by Z . 7 = 7y, where

sy = x. We show that this map is well-defined. Let = = %, T = z/, where

sy =x and s’y = a'. Sors' —sr' € q, x — 2’ € P and hence sy — s’y € P.

ol

We prove that ry — 'y’ € P. Since rr'(sy — s'y’) € P, hence rr'sy — rr's'y’ =
sy — sy 4+ 1'sy —rr's'y = vs(ry — r'y') + ('s — rs')r'y’ € P. But
r's —rs’ € g and qF C P, hence (r's — rs')r'y’ € P. Thus 's(ry — r'y’) € P.
If 7' € g, then r € g and we have ry —1'y’ € P. Let v/ ¢ q. Since r's ¢ q and P
is a g-prime submodule, ry — 'y’ € P. So % is a K-module and hence P € 3.

Therefore Spec(E) = X. O
Corollary 1.6. Let R be a Noetherian ring, p € Spec(R), E = E(%). Suppose
that \/anng(E) = p. Then there exists m € N such that A, = {x € E | p"z =
0} € Spec(E) and (A, : E) =p.

Proof. Since R is a Noetherian ring and /anng(E) = p, there exists n € N
such that p” C ann(E) and p"~! ¢ ann(E). Put m = n — 1. By [6, Theorem
3.4(4)], we have % is a K-module, where K is the quotient field of %. So by

the first part of the proof of Theorem 1.5, we have A,, is a p-prime submodule
of E. O

The following examples show that the assumptions of Corollary 1.6, are
satisfied in both cases, that R is an integral domain or it is not.

Example 1.7. Let R =Z and p = (0). We have E(%) = Q. Then

annZ<E<§>> — V(0 = (0) =p.

Example 1.8. Let R = Zg and p = (2). Clearly % ~ 7Z5. We show that
Ez4(Za) = Zo. We know that Ez(Za) ~ Za~ and Homy(Zg, Zz2=) is an injective
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Ze-module. It is easy to see that Homy(Zg, Zaw) >~ Zs. Then Ez (Zs2) = Zo.
Now we have

anng (Ez, (%)) = anng, (Ez,(Z2))

= Vanng, (Z5) = \/@) = @ =».

2. Prime submodules of an injective module over a Noetherian ring

In this section we characterize the prime submodules of an injective module
over a Noetherian ring R.

Proposition 2.1. Let R be a Noetherian ring, p € Spec(R) and M be an
injective R-module such that p C anng(M). Let K be the quotient field of %,
We have:

(i) M = S,(0) ® N such that N ~ @, ; K for some index set I.

(ii) Spec(M) =0 or Spec(M) ={Sx(0)®& D | D < N and D ~
some indez set J}.

(iii) If P € Spec(M), then (P : M) = p.

Proof. Since p C anng(M), M is an %— module and we have M; = S,(0) as
%—module. Now the proof is similar to the proof of Proposition 1.3. O

jeJKfor

Remark 2.2. Let R be a Noetherian ring, p € Spec(R) and M be an injective
R-module. We put M(p) = P,; E(%) such that the number of indecompos-
able summands in the decomposition of M (p) equals dimy,,yHompg, (k(p), M,),

where k(p) = plj{p. Let {p; | i € O} C Spec(R) be the set of all prime ideals
p of R such that dimy,yHomg, (k(p), M) # 0. By [1, Theorem 3.2.8], we
have M ~ @, M (p;). It is easy to show that there exist submodules N; of

M (i € Q) such that M = @, N; and for every i € Q, N; ~ M(p;).

ien
Lemma 2.3. With the notation as Remark 2.2, we have the following:

(i) If P € Spec(M(y)), then p C (P M(p)).

(i) If p € Maw(R), then Spec(M(p)) = {P 5 M(p) | pM(p) € P}.
Proof. (i) By Remark 2.2, M(p) = @, E(%). Let j € I and By = @, As
such that A; = E(%) and for every i € I\ {j}, A; = 0. We have M(p) =
@D,c; Bi- Let P € Spec(M(p)) and Q; = P B;(i € I). Then Q; = B; or
Qi € Spec(B;). Since B; ~ E(i)(i € Q), by Lemma 1.1(ii), for every i € I, we
have p C (Q; : Bi). So @,c; Q: € P implies that p C (P,c; Qi : M(p)) C (P:

M(p))-
(ii) The proof is similar to the proof of Lemma 1.1(v). O

In the following result, we give a charactrization of prime submodules of
injective modules over Artinian rings.
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Proposition 2.4. Let R be an Artinian ring. Let M be an injective R-module
and M = @,.q Ni be as in Remark 2.2. Then

Spec(M)={P<SM|P= @Pi such that for every i € Q, P; < N; and
1€Q
there exists a unique j € Q such that p;N; € P; # N; and
for every i € Q\ {j}, P, = N;}.

Proof. Let ¥ = {P < M | P = @,(, P; such that for every i € Q, P; < N; and
there exists a unique j € Q such that p;N; C P; # N; and for every i € Q\{j},
P; = N;}. We show that Spec(M) = X. Let P € ¥. So P = @,.q Pi such
that for every ¢ € Q, P; < N; and there exists a unique j € € such that
p;N; C P; # N; and for every i € Q\ {j}, P, = N;. Since N; ~ M(p;), by
Lemma 2.3(ii), P; € Spec(V;). It is easy to see that (P : M) = p; € Max(R)
and hence P € Spec(M). Conversely, let P € Spec(M) and for every i € Q,
P; = P\ N;. We prove that P = @, P;. Assume that  is a finite set
and || = n. By induction on n, we prove that P = @;_, P;. Let n = 2.
Then M = Ny & Ny. Clearly Py & P, C P. If P, = Ny and P, = Ns, then
P = M, which is a contradiction. Assume that Ny # Ps. So (P : No) = po
and (P; : N;y) = p; or R. Since p; # pa, there exists r € p; \ po. Put
Yy =x1 4+ x2 € P, where x1 € Ny and x5 € No. We have ry = rxy +rzg € P
and rzy € Py. So ras = ry—rxy € P[| Ny = P, and hence x5 € P,. Therefore
x1 =y—a9 € P(\Ny = P1. Soy € P, ® P, and we have P = P, @ P».
Let £ € N and suppose the claim is true for n = k — 1. Let M = @le N;.
Clearly @le P, C P. For every i € {1,...,k}, we have (P, : N;) = p; or
R. Since P # M, there exists ¢ € {1,...,k} such that (P, : N;) = p; and
there exists j € {1,...,k} such that (P; : N;) ¢ ﬂle’i#(Pi : N;). Let
j=1landr e (P : N)\(NyP: N)). Puty = 2,4 -+ a4 € P,
where z; € N;(1 < i < k). We prove that x; € P;(1 < i < k). Assume
that N = @% , N; and D = P(\N. If D = N, then for every i € {2,...,k}
P, = N; and hence P, # Ni. So (P : Ny) C ﬂfzz(Pi : N;) = R, which is
a contradiction. Therefore D # N and hence D € Spec(N). By assumption
of induction, we have D = @f:z P;,. Now put ¢ = x3 + -+ + 2. We have
ry=rax;+---+rey € Pandrzy € P CP. Sory =ry—rz; € PN =D.
Since r ¢ ﬂfzz(Pi :N;),r¢ (D:N)andthusy € D. Thusz; € P;(2 <i<k)
and hence z; € P;(1 < ¢ < k). Therefore P = @le P;. Then for every
n € N with [Q] = n, we have P = @, P;. Now we show that P = @, , P;.
Clearly @,cq Pi € P. Let z € P. There exist n € N and 41,...,i, €
such that z = XJ_,z;;, where z;; € N;;. Assume that, N = @?:1 N;, and
D = P(\N. We have D € Spec(N) or D = N. By the above argument, we
have z;, € P;;(1 < j <n) and hence z € @, Pi. So P = @, Pi- Now let
i,j € Q,i# j, P, # N; and P; # N;. Since p; # p;, there exist r € p; \ p;,
z; € N;\ P. Let z; € Pjand t = z; +x;. Sort =rz; +rz; € P. Since
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r ¢ p;, r¢ (P:M). On the other hand, z; ¢ P; and hence t ¢ P, which is a
contradiction. Therefore P € ¥ and we have Spec(M) = X. d

Theorem 2.5. Let R be a Noetherian ring and M be an injective R-module.
Then Spec(M) = {P S M | (P: M) = q € Spec(R) and % is a K-module,
where K is the quotient field of %}

Proof. Let ¥ = {P S M | (P : M) = q € Spec(R) and % is a K-module,
where K is the quotient field of %} We show that Spec(M) = X. Let P € X.
We have (P : M) = q € Spec(R) and %% is a K-module. Then {P} is a
{0}-prime submodule of K-vector space 2. So {P} is a {0}-prime submodule
of £-module % and hence P is a g-prime submodule of R-module M. Thus
P € Spec(M). Conversely, let P € Spec(M). There exists q € Spec(R) such
that (P : M) = q. By Remark 2.2, there exist an index set {2 and a subset {p;
| i € Q} of Spec(R) and submodules N; of M (i € Q) such that M = P, ., Ni,
where N; ~ M(p;)(i € ). Let ' ={i € Q| N; £ P}. If Q' = 0, then P = M,
which is a contradiction. So @' # 0. Put A =@,/ Ni and B = D;co\a Nis
then M = A@® B. Clearly B < P. Let P, = PN, (i € Q). We have
@iy B C P. Since LN\B = {0} (i € ), (D, P) N B = {0} and
hence (@, P;) ® B € P. So by Lemma 2.3(i), ();cq pi € q. Now we prove
that % is a K-module. At first, we define R-homomorphism f, : A — A by
fs{ziticar) = {sxi}icqr, where s € R\ q. By Lemma 1.4, it is easy to see
that fs is an automorphism of A. For every r € R, s € R\ q, z € M, we
put7=r+q,s=s+qand T =z + P. Let x = a + b, where a € A and
b € B. Since for every a € A, fs is an automorphism of A, there exists a
unique y € A such that sy = a. Now we define the map K x % — % by %
(@ + b) = 7y, where sy = a. By reasoning similar to the proof of Theorem 1.5,
M

this map is well-defined and hence 3 is a K-module. Therefore P € ¥ and

Spec(M) = X. O
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