A CHARACTERIZATION OF PRIME SUBMODULES OF AN INJECTIVE MODULE OVER A NOETHERIAN RING

Reza Nekooei and Zahra Pourshafiey

Abstract

In this paper, we give a characterization of prime submodules of an injective module over a Noetherian ring.

0. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Let M be an R-module. We denote a (proper) submodule N of M, by $(N \nRightarrow M) N \leq M$. A proper submodule P of an R-module M is called prime, if $r m \in P$ for some $r \in R$ and $m \in M$ implies $m \in P$ or $r \in(P: M)$, where $(P: M)=\{r \in R \mid r M \subseteq P\}$. If P is a prime submodule of an R-module M, then $(P: M)$ is a prime ideal of R. The set of all prime submodules of an R-module M is denoted by $\operatorname{Spec}(M)$. An R-module M is injective if for every R-module monomorphism $f: N \longrightarrow N^{\prime}$ and for every R-module homomorphism $g: N \longrightarrow M$, there exists an R-module homomorphism $h: N^{\prime} \longrightarrow M$ such that $h f=g$. Let $N \subseteq M$ be R-modules. We say that M is an essential extension of N, if for any nonzero R-submodue U of M one has $U \cap N \neq 0$. Let M be an R-module. An injective module E is called an injective envelope of M, if E is an essential extension of M and denoted by $E(M)$. We know that any module M can be embedded into an injective module; and injective envelope of M is the minimal embedding. In this case, the corresponding injective module is unique up to isomorphism. An element x of an R-module M is called torsion, if it has a nonzero annihilator in R. Let M_{t} be the set of all torsion elements of M. It is clear that if R is an integral domain, then M_{t} is a submodule of M. We say that M_{t} is the torsion submodule of M. An R-module M is divisible if for every $0 \neq r \in R$, $r M=M$. It is easy to see that every injective module over an integral domain R is divisible. If M is a divisible R-module, then for every proper submodule N of $M,(N: M)=0$.

Received February 11, 2018; Revised June 26, 2018; Accepted August 16, 2018.
2010 Mathematics Subject Classification. 13C11, 13C99.
Key words and phrases. injective modules, injective envelopes, prime submodules.

Prime submodules of a module over a commutative ring have been studied by many authors, see $[4,7,11]$. Also prime submodules of a finitely generated free module over a PID were studied in $[2,3]$. The authors in [2], described prime submodules of a finitely generated free module over a UFD and characterized the prime submodules of a free module of finite rank over a PID. The authors in [8,9], extended some results obtained in [2] to a Dedekind and valuation domain. In [10], we have characterized prime submodules of an injective module over a Noetherian domain. In this paper, we extend our results to Noetherian ring.

1. Prime submodules of $E\left(\frac{R}{\mathfrak{p}}\right)$

In this section, we give some results about prime submodules of $E\left(\frac{R}{\mathfrak{p}}\right)$, when R is a Noetherian ring and $\mathfrak{p} \in \operatorname{Spec}(R)$. Then we characterize all prime submodules of $E\left(\frac{R}{\mathfrak{p}}\right)$.

Lemma 1.1. Let R be a Noetherian ring, $\mathfrak{p} \in \operatorname{Spec}(R)$ and $E=E\left(\frac{R}{\mathfrak{p}}\right)$. We have the following:
(i) $a n n_{R}(E) \subseteq \mathfrak{p}$.
(ii) If $P \in \operatorname{Spec}(E)$, then $\mathfrak{p} \subseteq(P: E)$.
(iii) If $0 \neq P \in \operatorname{Spec}(E)$ and $\mathfrak{q}=(P: E)$, then $\frac{R}{\mathfrak{p}} \subseteq P$ or $P \cap \frac{R}{\mathfrak{p}}=\frac{\mathfrak{q}}{\mathfrak{p}}$.
(iv) If $0 \neq P \in \operatorname{Spec}(E)$ and $(P: E)=\mathfrak{p}$, then $\frac{R}{\mathfrak{p}} \subseteq P$.
(v) If $\mathfrak{p} \in \operatorname{Max}(R)$, then $\operatorname{Spec}(E)=\{P \supsetneqq E \mid \mathfrak{p} E \subseteq P\}$ and in this case for every $P \in \operatorname{Spec}(E)$, we have $(P: E)=\mathfrak{p}$.

Proof. (i) Let $r \in \operatorname{ann}_{R}(E)$. So $r E=0$ and hence $r\left(\frac{R}{\mathfrak{p}}\right)=0$. Thus $r+\mathfrak{p}=$ $r(1+\mathfrak{p})=\mathfrak{p}$ and so $r \in \mathfrak{p}$. Therefore $\operatorname{ann}_{R}(E) \subseteq \mathfrak{p}$.
(ii) Let $\mathfrak{q}=(P: E)$ and $\mathfrak{p} \nsubseteq \mathfrak{q}$. We show that for every $x \in E, \operatorname{ann}_{R}(x) \nsubseteq \mathfrak{q}$. Let $y \in E$ and $\operatorname{ann}_{R}(y) \subseteq \mathfrak{q}$. Since R is Noetherian, by [6, Theorem 3.4(1)], $E=\bigcup_{m=1}^{\infty} A_{m}$, where $A_{m}=\left\{x \in E \mid \mathfrak{p}^{m} x=0\right\}$. So there exists $m \in \mathbb{N}$ such that $\mathfrak{p}^{m} y=0$ and hence $\mathfrak{p}^{m} \subseteq \mathfrak{q}$. Then $\mathfrak{p} \subseteq \mathfrak{q}$, which is a contradiction. Therefore for every $x \in E$, $\operatorname{ann}_{R}(x) \nsubseteq \mathfrak{q}$. Now Let $x \in E$. So there exists $r \in R \backslash \mathfrak{q}$ such that $r x=0$ and hence $x \in P$. Now we have $P=E$, which is a contradiction. Therefore $\mathfrak{p} \subseteq \mathfrak{q}$.
(iii) Let $\frac{R}{\mathfrak{p}} \nsubseteq P$. We show that $P \cap \frac{R}{\mathfrak{p}}=\frac{\mathfrak{q}}{\mathfrak{p}}$. Since $\mathfrak{q} E \subseteq P, \mathfrak{q}\left(\frac{R}{\mathfrak{p}}\right) \subseteq P$ and hence $\frac{\mathfrak{q}}{\mathfrak{p}} \subseteq P \cap \frac{R}{\mathfrak{p}}$. Now let $P \cap \frac{R}{\mathfrak{p}}=\frac{\mathfrak{a}}{\mathfrak{p}}$ for some ideal \mathfrak{a} of R. If $\mathfrak{a}=\mathfrak{p}$, then $P \cap \frac{R}{\mathfrak{p}}=\{0\}$ and since $E\left(\frac{R}{\mathfrak{p}}\right)$ is an essential extension of $\frac{R}{\mathfrak{p}}, P=0$, which is a contradiction. Thus $\mathfrak{a} \neq \mathfrak{p}$. Let $r \in \mathfrak{a} \backslash \mathfrak{p}$. So $r+\mathfrak{p}=r(1+\mathfrak{p}) \in P$ and since $1+\mathfrak{p} \notin P$, we have $r \in \mathfrak{q}$. Therefore $P \cap \frac{R}{\mathfrak{p}}=\frac{\mathfrak{q}}{\mathfrak{p}}$.
(iv) It follows by part (iii).
(v) Let $P \in \operatorname{Spec}(E)$. By part (ii), $\mathfrak{p} \subseteq(P: E)$ and hence $\mathfrak{p} E \subseteq P$. Conversely, let $P \nsupseteq E$ and $\mathfrak{p} E \subseteq P$. Then $\mathfrak{p} \subseteq(P: E) \neq R$. Since $\mathfrak{p} \in \operatorname{Max}(R)$, we have $(P: E)=\mathfrak{p}$. Therefore $P \in \operatorname{Spec}(E)$.

Let R be a ring, $\mathfrak{p} \in \operatorname{Spec}(R), M$ be an R-module and $N \leq M$. Lu in [5], defined the saturation of N with respect to \mathfrak{p} by $S_{\mathfrak{p}}(N)=\{x \in M \mid s x \in N$ for some $s \in R \backslash \mathfrak{p}\}$.
Proposition 1.2. Let R be a Noetherian ring, $\mathfrak{p} \in \operatorname{Spec}(R)$ and $E=E\left(\frac{R}{\mathfrak{p}}\right)$. Then
(i) $S_{\mathfrak{p}}(0)=\{0\}$, where $\{0\}$ is the zero submodule of E.
(ii) $\operatorname{ann}_{R}(E)=\mathfrak{p}$ if and only if $\{0\} \in \operatorname{Spec}(E)$.

Proof. (i) Let $S_{\mathfrak{p}}(0) \cap \frac{R}{\mathfrak{p}}=\frac{\mathfrak{a}}{\mathfrak{p}}$, where \mathfrak{a} is an ideal of R. Suppose that $\mathfrak{a} \neq \mathfrak{p}$ and choose $r \in \mathfrak{a} \backslash \mathfrak{p}$. So $r+\mathfrak{p} \in S_{\mathfrak{p}}(0)$ and hence there exists $s \in R \backslash \mathfrak{p}$ such that $s r+\mathfrak{p}=s(r+\mathfrak{p})=\mathfrak{p}$. Then $s r \in \mathfrak{p}$ and hence $r \in \mathfrak{p}$ or $s \in \mathfrak{p}$, which is a contradiction. Therefore $\mathfrak{a}=\mathfrak{p}$. Thus $S_{\mathfrak{p}}(0) \cap \frac{R}{\mathfrak{p}}=\{0\}$ and since $E\left(\frac{R}{\mathfrak{p}}\right)$ is an essential extension of $\frac{R}{\mathfrak{p}}, S_{\mathfrak{p}}(0)=\{0\}$.
(ii) Let $\operatorname{ann}_{R}(E)=\mathfrak{p}$. Suppose that $0 \neq x \in E, r \in R$ such that $r x=0$. If $r \in R \backslash \mathfrak{p}$, by part (i), we have $x \in S_{\mathfrak{p}}(0)=\{0\}$, which is a contradiction. So $r \in \mathfrak{p}$ and hence $\{0\} \in \operatorname{Spec}(E)$. Conversely, let $\{0\} \in \operatorname{Spec}(E)$. By Lemma 1.1, parts (i) and (ii), we have $\mathfrak{p} \subseteq(0: E)=\operatorname{ann}_{R}(E) \subseteq \mathfrak{p}$ and hence $\operatorname{ann}_{R}(E)=\mathfrak{p}$.

In [10, Theorem 2.6], the authors prove that, if R is a Noetherian domain with quotient filed K and M is an injective R-module, then
(i) $M=M_{t} \oplus N$, where $N \simeq \oplus_{i \in I} K$ for some index set I.
(ii) $\operatorname{Spec}(M)=\emptyset$ or $\operatorname{Spec}(M)=\left\{M_{t} \oplus D \mid D \varsubsetneqq N, D \simeq \oplus_{j \in J} K\right.$ for some index set $J\}$.
Proposition 1.3. Let R be a Noetherian ring, $\mathfrak{p} \in \operatorname{Spec}(R), E=E\left(\frac{R}{\mathfrak{p}}\right)$ and $a n n_{R}(E)=\mathfrak{p}$. Let K be the quotient field of $\frac{R}{\mathfrak{p}}$. We have:
(i) $E \simeq \oplus_{i \in I} K$ for some index set I.
(ii) $\operatorname{Spec}(E)=\left\{P \supsetneqq E \mid P \simeq \oplus_{j \in J} K\right.$ for some index set $\left.J\right\}$.
(iii) If $P \in \operatorname{Spec}(E)$, then $(P: E)=\mathfrak{p}$.

Proof. (i) If $\operatorname{ann}_{R}(E)=\mathfrak{p}$, then E is an $\frac{R}{\mathfrak{p}}$-module. Since E is an injective R-module, by the Baer's Criterion it is easy to show that E is an injective $\frac{R}{\mathfrak{p}}$-module. Since $E_{t}=S_{\mathfrak{p}}(0)$ as $\frac{R}{\mathfrak{p}}$-module, then by Proposition 1.2(i), $E_{t}=0$. Now by [10, Theorem 2.6(i)], $E \simeq \oplus_{i \in I} K$, for some index set I.
(ii) It follows by part (i) and [10, Theorem 2.6(ii)].
(iii) Since E is an injective $\frac{R}{\mathfrak{p}}$-module, E is a divisible $\frac{R}{\mathfrak{p}}$-module and hence $\left(P:_{R / \mathfrak{p}} E\right)=0$. So $\left(P:_{R} E\right)=\mathfrak{p}$.

For the characterization of prime submodules of $E=E\left(\frac{R}{\mathfrak{p}}\right)$, we need the following lemma.
Lemma 1.4. Let R be a Noetherian ring, $\mathfrak{p} \in \operatorname{Spec}(R)$ and $E=E\left(\frac{R}{\mathfrak{p}}\right)$. If $s \in R \backslash \mathfrak{p}$, then the R-homomorphism $f_{s}: E \longrightarrow E$ defined by $x \mapsto s x$ is an automorphism of E.

Proof. See [6, Lemma 3.2(2)].
Theorem 1.5. Let R be a Noetherian ring, $\mathfrak{p} \in \operatorname{Spec}(R)$ and $E=E\left(\frac{R}{\mathfrak{p}}\right)$. Then $\operatorname{Spec}(E)=\left\{P \nsupseteq E \mid \mathfrak{p} \subseteq(P: E)=\mathfrak{q} \in \operatorname{Spec}(R)\right.$ and $\frac{E}{P}$ is a K-module, where K is the quotient field of $\left.\frac{R}{q}\right\}$.

Proof. Let $\Sigma=\left\{P \supsetneqq E \mid \mathfrak{p} \subseteq(P: E)=\mathfrak{q} \in \operatorname{Spec}(R)\right.$ and $\frac{E}{P}$ is a K-module, where K is the quotient field of $\left.\frac{R}{q}\right\}$. We show that $\operatorname{Spec}(E)=\Sigma$. Let $P \in \Sigma$. Since every proper submodule of a vector space is $\{0\}$-prime, $\{P\}$ is a $\{0\}$-prime submodule of K-vector space $\frac{E}{P}$. So P is a $\{0\}$-prime submodule of $\frac{R}{q}$-module $\frac{E}{P}$ and hence P is a \mathfrak{q}-prime submodule of R-module E. Thus $\Sigma \subseteq \operatorname{Spec}(E)$. Conversely, let $P \in \operatorname{Spec}(E)$. By Lemma 1.1(ii), $\mathfrak{p} \subseteq(P: E)=\mathfrak{q}$. Since $\mathfrak{q} E \subseteq P, \frac{E}{P}$ is an $\frac{R}{\mathfrak{q}}$-module. Let K be the quotient field of $\frac{R}{\mathfrak{q}}$. For every $r \in R, s \in R \backslash \mathfrak{q}$ and $x \in E$, we put $\bar{r}=r+\mathfrak{q}, \bar{s}=s+\mathfrak{q}$ and $\bar{x}=x+P$. By Lemma 1.4, for every $s \in R \backslash \mathfrak{q}$ and $x \in E$ there exists a unique $y \in E$ such that $s y=x$. Now we define the map $K \times \frac{E}{P} \longrightarrow \frac{E}{P}$ by $\frac{\bar{r}}{\bar{s}} . \bar{x}=\overline{r y}$, where $s y=x$. We show that this map is well-defined. Let $\frac{\overline{\bar{r}}}{\bar{s}}=\frac{\overline{r^{\prime}}}{s^{\prime}}, \bar{x}=\overline{x^{\prime}}$, where $s y=x$ and $s^{\prime} y^{\prime}=x^{\prime}$. So $r s^{\prime}-s r^{\prime} \in q, x-x^{\prime} \in P$ and hence $s y-s^{\prime} y^{\prime} \in P$. We prove that $r y-r^{\prime} y^{\prime} \in P$. Since $r r^{\prime}\left(s y-s^{\prime} y^{\prime}\right) \in P$, hence $r r^{\prime} s y-r r^{\prime} s^{\prime} y^{\prime}=$ $r r^{\prime} s y-r^{\prime 2} s y^{\prime}+{r^{\prime}}^{2} s y^{\prime}-r r^{\prime} s^{\prime} y^{\prime}=r^{\prime} s\left(r y-r^{\prime} y^{\prime}\right)+\left(r^{\prime} s-r s^{\prime}\right) r^{\prime} y^{\prime} \in P$. But $r^{\prime} s-r s^{\prime} \in \mathfrak{q}$ and $\mathfrak{q} E \subseteq P$, hence $\left(r^{\prime} s-r s^{\prime}\right) r^{\prime} y^{\prime} \in P$. Thus $r^{\prime} s\left(r y-r^{\prime} y^{\prime}\right) \in P$. If $r^{\prime} \in \mathfrak{q}$, then $r \in \mathfrak{q}$ and we have $r y-r^{\prime} y^{\prime} \in P$. Let $r^{\prime} \notin \mathfrak{q}$. Since $r^{\prime} s \notin \mathfrak{q}$ and P is a \mathfrak{q}-prime submodule, $r y-r^{\prime} y^{\prime} \in P$. So $\frac{E}{P}$ is a K-module and hence $P \in \Sigma$. Therefore $\operatorname{Spec}(E)=\Sigma$.
Corollary 1.6. Let R be a Noetherian ring, $\mathfrak{p} \in \operatorname{Spec}(R), E=E\left(\frac{R}{\mathfrak{p}}\right)$. Suppose that $\sqrt{\operatorname{ann}_{R}(E)}=\mathfrak{p}$. Then there exists $m \in \mathbb{N}$ such that $A_{m}=\left\{x \in E \mid \mathfrak{p}^{m} x=\right.$ $0\} \in \operatorname{Spec}(E)$ and $\left(A_{m}: E\right)=\mathfrak{p}$.
Proof. Since R is a Noetherian ring and $\sqrt{\operatorname{ann}_{R}(E)}=\mathfrak{p}$, there exists $n \in \mathbb{N}$ such that $\mathfrak{p}^{n} \subseteq \operatorname{ann}(E)$ and $\mathfrak{p}^{n-1} \nsubseteq \operatorname{ann}(E)$. Put $m=n-1$. By $[6$, Theorem $3.4(4)$], we have $\frac{E}{A_{m}}$ is a K-module, where K is the quotient field of $\frac{R}{\mathfrak{p}}$. So by the first part of the proof of Theorem 1.5, we have A_{m} is a \mathfrak{p}-prime submodule of E.

The following examples show that the assumptions of Corollary 1.6, are satisfied in both cases, that R is an integral domain or it is not.

Example 1.7. Let $R=\mathbb{Z}$ and $\mathfrak{p}=(0)$. We have $E\left(\frac{R}{\mathfrak{p}}\right)=\mathbb{Q}$. Then

$$
\sqrt{\operatorname{ann}_{\mathbb{Z}}\left(E\left(\frac{R}{\mathfrak{p}}\right)\right)}=\sqrt{(0)}=(0)=\mathfrak{p}
$$

Example 1.8. Let $R=\mathbb{Z}_{6}$ and $\mathfrak{p}=\langle\overline{2}\rangle$. Clearly $\frac{R}{\mathfrak{p}} \simeq \mathbb{Z}_{2}$. We show that $E_{\mathbb{Z}_{6}}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$. We know that $E_{\mathbb{Z}}\left(\mathbb{Z}_{2}\right) \simeq \mathbb{Z}_{2^{\infty}}$ and $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{6}, \mathbb{Z}_{2^{\infty}}\right)$ is an injective
\mathbb{Z}_{6}-module. It is easy to see that $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{6}, \mathbb{Z}_{2} \infty\right) \simeq \mathbb{Z}_{2}$. Then $E_{\mathbb{Z}_{6}}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$. Now we have

$$
\begin{aligned}
\sqrt{\operatorname{ann}_{\mathbb{Z}_{6}}\left(E_{\mathbb{Z}_{6}}\left(\frac{R}{\mathfrak{p}}\right)\right)} & =\sqrt{\operatorname{ann}_{\mathbb{Z}_{6}}\left(E_{\mathbb{Z}_{6}}\left(\mathbb{Z}_{2}\right)\right)} \\
& =\sqrt{\operatorname{ann}_{\mathbb{Z}_{6}}\left(\mathbb{Z}_{2}\right)}=\sqrt{\langle\overline{2}\rangle}=\langle\overline{2}\rangle=\mathfrak{p}
\end{aligned}
$$

2. Prime submodules of an injective module over a Noetherian ring

In this section we characterize the prime submodules of an injective module over a Noetherian ring R.

Proposition 2.1. Let R be a Noetherian ring, $\mathfrak{p} \in \operatorname{Spec}(R)$ and M be an injective R-module such that $\mathfrak{p} \subseteq \operatorname{ann}_{R}(M)$. Let K be the quotient field of $\frac{R}{\mathfrak{p}}$. We have:
(i) $M=S_{\mathfrak{p}}(0) \oplus N$ such that $N \simeq \bigoplus_{i \in I} K$ for some index set I.
(ii) $\operatorname{Spec}(M)=\emptyset \operatorname{or} \operatorname{Spec}(M)=\left\{S_{\mathfrak{p}}(0) \oplus D \mid D \supsetneqq N\right.$ and $D \simeq \bigoplus_{j \in J} K$ for some index set $J\}$.
(iii) If $P \in \operatorname{Spec}(M)$, then $(P: M)=\mathfrak{p}$.

Proof. Since $\mathfrak{p} \subseteq \operatorname{ann}_{R}(M), M$ is an $\frac{R}{\mathfrak{p}}$ - module and we have $M_{t}=S_{\mathfrak{p}}(0)$ as $\frac{R}{\mathfrak{p}}$-module. Now the proof is similar to the proof of Proposition 1.3.
Remark 2.2. Let R be a Noetherian ring, $\mathfrak{p} \in \operatorname{Spec}(R)$ and M be an injective R-module. We put $M(\mathfrak{p})=\bigoplus_{i \in I} E\left(\frac{R}{\mathfrak{p}}\right)$ such that the number of indecomposable summands in the decomposition of $M(\mathfrak{p})$ equals $\operatorname{dim}_{k(\mathfrak{p})} \operatorname{Hom}_{R_{\mathfrak{p}}}\left(k(\mathfrak{p}), M_{\mathfrak{p}}\right)$, where $k(\mathfrak{p})=\frac{R_{\mathfrak{p}}}{\mathfrak{p} R_{\mathfrak{p}}}$. Let $\left\{\mathfrak{p}_{i} \mid i \in \Omega\right\} \subseteq \operatorname{Spec}(R)$ be the set of all prime ideals \mathfrak{p} of R such that $\operatorname{dim}_{k(\mathfrak{p})} \operatorname{Hom}_{R_{\mathfrak{p}}}\left(k(\mathfrak{p}), M_{\mathfrak{p}}\right) \neq 0$. By [1, Theorem 3.2.8], we have $M \simeq \bigoplus_{i \in \Omega} M\left(\mathfrak{p}_{i}\right)$. It is easy to show that there exist submodules N_{i} of $M(i \in \Omega)$ such that $M=\bigoplus_{i \in \Omega} N_{i}$ and for every $i \in \Omega, N_{i} \simeq M\left(\mathfrak{p}_{i}\right)$.

Lemma 2.3. With the notation as Remark 2.2, we have the following:
(i) If $P \in S \operatorname{pec}(M(\mathfrak{p}))$, then $\mathfrak{p} \subseteq(P: M(\mathfrak{p}))$.
(ii) If $\mathfrak{p} \in \operatorname{Max}(R)$, then $\operatorname{Spec}(M(\mathfrak{p}))=\{P \nsupseteq M(\mathfrak{p}) \mid \mathfrak{p} M(\mathfrak{p}) \subseteq P\}$.

Proof. (i) By Remark 2.2, $M(\mathfrak{p})=\bigoplus_{i \in I} E\left(\frac{R}{\mathfrak{p}}\right)$. Let $j \in I$ and $B_{j}=\bigoplus_{i \in I} A_{i}$ such that $A_{j}=E\left(\frac{R}{\mathfrak{p}}\right)$ and for every $i \in I \backslash\{j\}, A_{i}=0$. We have $M(\mathfrak{p})=$ $\bigoplus_{i \in I} B_{i}$. Let $P \in \operatorname{Spec}(M(\mathfrak{p}))$ and $Q_{i}=P \bigcap B_{i}(i \in I)$. Then $Q_{i}=B_{i}$ or $Q_{i} \in \operatorname{Spec}\left(B_{i}\right)$. Since $B_{i} \simeq E\left(\frac{R}{\mathfrak{p}}\right)(i \in \Omega)$, by Lemma 1.1(ii), for every $i \in I$, we have $\mathfrak{p} \subseteq\left(Q_{i}: B_{i}\right)$. So $\bigoplus_{i \in I} Q_{i} \subseteq P$ implies that $\mathfrak{p} \subseteq\left(\bigoplus_{i \in I} Q_{i}: M(\mathfrak{p})\right) \subseteq(P$: $M(\mathfrak{p}))$.
(ii) The proof is similar to the proof of Lemma 1.1(v).

In the following result, we give a charactrization of prime submodules of injective modules over Artinian rings.

Proposition 2.4. Let R be an Artinian ring. Let M be an injective R-module and $M=\bigoplus_{i \in \Omega} N_{i}$ be as in Remark 2.2. Then
$\operatorname{Spec}(M)=\left\{P \supsetneqq M \mid P=\bigoplus_{i \in \Omega} P_{i}\right.$ such that for every $i \in \Omega, P_{i} \leq N_{i}$ and
there exists a unique $j \in \Omega$ such that $\mathfrak{p}_{j} N_{j} \subseteq P_{j} \neq N_{j}$ and
for every $\left.i \in \Omega \backslash\{j\}, P_{i}=N_{i}\right\}$.
Proof. Let $\Sigma=\left\{P \supsetneqq M \mid P=\bigoplus_{i \in \Omega} P_{i}\right.$ such that for every $i \in \Omega, P_{i} \leq N_{i}$ and there exists a unique $j \in \Omega$ such that $\mathfrak{p}_{j} N_{j} \subseteq P_{j} \neq N_{j}$ and for every $i \in \Omega \backslash\{j\}$, $\left.P_{i}=N_{i}\right\}$. We show that $\operatorname{Spec}(M)=\Sigma$. Let $P \in \Sigma$. So $P=\bigoplus_{i \in \Omega} P_{i}$ such that for every $i \in \Omega, P_{i} \leq N_{i}$ and there exists a unique $j \in \Omega$ such that $\mathfrak{p}_{j} N_{j} \subseteq P_{j} \neq N_{j}$ and for every $i \in \Omega \backslash\{j\}, P_{i}=N_{i}$. Since $N_{j} \simeq M\left(\mathfrak{p}_{j}\right)$, by Lemma 2.3(ii), $P_{j} \in \operatorname{Spec}\left(N_{j}\right)$. It is easy to see that $(P: M)=\mathfrak{p}_{j} \in \operatorname{Max}(R)$ and hence $P \in \operatorname{Spec}(M)$. Conversely, let $P \in \operatorname{Spec}(M)$ and for every $i \in \Omega$, $P_{i}=P \bigcap N_{i}$. We prove that $P=\bigoplus_{i \in \Omega} P_{i}$. Assume that Ω is a finite set and $|\Omega|=n$. By induction on n, we prove that $P=\bigoplus_{i=1}^{n} P_{i}$. Let $n=2$. Then $M=N_{1} \oplus N_{2}$. Clearly $P_{1} \oplus P_{2} \subseteq P$. If $P_{1}=N_{1}$ and $P_{2}=N_{2}$, then $P=M$, which is a contradiction. Assume that $N_{2} \neq P_{2}$. So $\left(P_{2}: N_{2}\right)=\mathfrak{p}_{2}$ and $\left(P_{1}: N_{1}\right)=\mathfrak{p}_{1}$ or R. Since $\mathfrak{p}_{1} \neq \mathfrak{p}_{2}$, there exists $r \in \mathfrak{p}_{1} \backslash \mathfrak{p}_{2}$. Put $y=x_{1}+x_{2} \in P$, where $x_{1} \in N_{1}$ and $x_{2} \in N_{2}$. We have $r y=r x_{1}+r x_{2} \in P$ and $r x_{1} \in P_{1}$. So $r x_{2}=r y-r x_{1} \in P \bigcap N_{2}=P_{2}$ and hence $x_{2} \in P_{2}$. Therefore $x_{1}=y-x_{2} \in P \bigcap N_{1}=P_{1}$. So $y \in P_{1} \oplus P_{2}$ and we have $P=P_{1} \oplus P_{2}$. Let $k \in \mathbb{N}$ and suppose the claim is true for $n=k-1$. Let $M=\bigoplus_{i=1}^{k} N_{i}$. Clearly $\bigoplus_{i=1}^{k} P_{i} \subseteq P$. For every $i \in\{1, \ldots, k\}$, we have $\left(P_{i}: N_{i}\right)=\mathfrak{p}_{i}$ or R. Since $P \neq M$, there exists $i \in\{1, \ldots, k\}$ such that $\left(P_{i}: N_{i}\right)=\mathfrak{p}_{i}$ and there exists $j \in\{1, \ldots, k\}$ such that $\left(P_{j}: N_{j}\right) \nsubseteq \bigcap_{i=1, i \neq j}^{k}\left(P_{i}: N_{i}\right)$. Let $j=1$ and $r \in\left(P_{1}: N_{1}\right) \backslash \bigcap_{i=2}^{k}\left(P_{i}: N_{i}\right)$. Put $y=x_{1}+\cdots+x_{k} \in P$, where $x_{i} \in N_{i}(1 \leq i \leq k)$. We prove that $x_{i} \in P_{i}(1 \leq i \leq k)$. Assume that $N=\bigoplus_{i=2}^{k} N_{i}$ and $D=P \bigcap N$. If $D=N$, then for every $i \in\{2, \ldots, k\}$ $P_{i}=N_{i}$ and hence $P_{1} \neq N_{1}$. So $\left(P_{1}: N_{1}\right) \subseteq \bigcap_{i=2}^{k}\left(P_{i}: N_{i}\right)=R$, which is a contradiction. Therefore $D \neq N$ and hence $D \in \operatorname{Spec}(N)$. By assumption of induction, we have $D=\bigoplus_{i=2}^{k} P_{i}$. Now put $y^{\prime}=x_{2}+\cdots+x_{k}$. We have $r y=r x_{1}+\cdots+r x_{k} \in P$ and $r x_{1} \in P_{1} \subseteq P$. So $r y^{\prime}=r y-r x_{1} \in P \bigcap N=D$. Since $r \notin \bigcap_{i=2}^{k}\left(P_{i}: N_{i}\right), r \notin(D: N)$ and thus $y^{\prime} \in D$. Thus $x_{i} \in P_{i}(2 \leq i \leq k)$ and hence $x_{i} \in P_{i}(1 \leq i \leq k)$. Therefore $P=\bigoplus_{i=1}^{k} P_{i}$. Then for every $n \in \mathbb{N}$ with $|\Omega|=n$, we have $P=\bigoplus_{i=1}^{n} P_{i}$. Now we show that $P=\bigoplus_{i \in \Omega} P_{i}$. Clearly $\bigoplus_{i \in \Omega} P_{i} \subseteq P$. Let $z \in P$. There exist $n \in \mathbb{N}$ and $i_{1}, \ldots, i_{n} \in \Omega$ such that $z=\sum_{j=1}^{n} x_{i_{j}}$, where $x_{i_{j}} \in N_{i_{j}}$. Assume that, $N=\bigoplus_{j=1}^{n} N_{i_{j}}$ and $D=P \bigcap N$. We have $D \in \operatorname{Spec}(N)$ or $D=N$. By the above argument, we have $x_{i_{j}} \in P_{i_{j}}(1 \leq j \leq n)$ and hence $z \in \bigoplus_{i \in \Omega} P_{i}$. So $P=\bigoplus_{i \in \Omega} P_{i}$. Now let $i, j \in \Omega, i \neq j, P_{i} \neq N_{i}$ and $P_{j} \neq N_{j}$. Since $\mathfrak{p}_{i} \neq \mathfrak{p}_{j}$, there exist $r \in \mathfrak{p}_{i} \backslash \mathfrak{p}_{j}$, $x_{i} \in N_{i} \backslash P_{i}$. Let $x_{j} \in P_{j}$ and $t=x_{i}+x_{j}$. So $r t=r x_{i}+r x_{j} \in P$. Since
$r \notin \mathfrak{p}_{j}, r \notin(P: M)$. On the other hand, $x_{i} \notin P_{i}$ and hence $t \notin P$, which is a contradiction. Therefore $P \in \Sigma$ and we have $\operatorname{Spec}(M)=\Sigma$.

Theorem 2.5. Let R be a Noetherian ring and M be an injective R-module. Then $\operatorname{Spec}(M)=\left\{P \supsetneqq M \mid(P: M)=\mathfrak{q} \in \operatorname{Spec}(R)\right.$ and $\frac{M}{P}$ is a K-module, where K is the quotient field of $\left.\frac{R}{q}\right\}$.
Proof. Let $\Sigma=\left\{P \ngtr M \mid(P: M)=\mathfrak{q} \in \operatorname{Spec}(R)\right.$ and $\frac{M}{P}$ is a K-module, where K is the quotient field of $\left.\frac{R}{q}\right\}$. We show that $\operatorname{Spec}(M)=\Sigma$. Let $P \in \Sigma$. We have $(P: M)=\mathfrak{q} \in \operatorname{Spec}(R)$ and $\frac{M}{P}$ is a K-module. Then $\{P\}$ is a $\{0\}$-prime submodule of K-vector space $\frac{M}{P}$. So $\{P\}$ is a $\{0\}$-prime submodule of $\frac{R}{\mathfrak{q}}$-module $\frac{M}{P}$ and hence P is a \mathfrak{q}-prime submodule of R-module M. Thus $P \in \operatorname{Spec}(M)$. Conversely, let $P \in \operatorname{Spec}(M)$. There exists $\mathfrak{q} \in \operatorname{Spec}(R)$ such that $(P: M)=\mathfrak{q}$. By Remark 2.2, there exist an index set Ω and a subset $\left\{\mathfrak{p}_{i}\right.$ $\mid i \in \Omega\}$ of $\operatorname{Spec}(R)$ and submodules N_{i} of $M(i \in \Omega)$ such that $M=\bigoplus_{i \in \Omega} N_{i}$, where $N_{i} \simeq M\left(\mathfrak{p}_{i}\right)(i \in \Omega)$. Let $\Omega^{\prime}=\left\{i \in \Omega \mid N_{i} \nsubseteq P\right\}$. If $\Omega^{\prime}=\emptyset$, then $P=M$, which is a contradiction. So $\Omega^{\prime} \neq \emptyset$. Put $A=\bigoplus_{i \in \Omega^{\prime}} N_{i}$ and $B=\bigoplus_{i \in \Omega \backslash \Omega^{\prime}} N_{i}$, then $M=A \oplus B$. Clearly $B \leq P$. Let $P_{i}=P \bigcap N_{i}\left(i \in \Omega^{\prime}\right)$. We have $\bigoplus_{i \in \Omega^{\prime}} P_{i} \subseteq P$. Since $P_{i} \bigcap B=\{0\}\left(i \in \Omega^{\prime}\right),\left(\bigoplus_{i \in \Omega^{\prime}} P_{i}\right) \cap B=\{0\}$ and hence $\left(\bigoplus_{i \in \Omega^{\prime}} P_{i}\right) \oplus B \subseteq P$. So by Lemma 2.3(i), $\bigcap_{i \in \Omega^{\prime}} \mathfrak{p}_{i} \subseteq \mathfrak{q}$. Now we prove that $\frac{E}{P}$ is a K-module. At first, we define R-homomorphism $f_{s}: A \longrightarrow A$ by $f_{s}\left(\left\{x_{i}\right\}_{i \in \Omega^{\prime}}\right)=\left\{s x_{i}\right\}_{i \in \Omega^{\prime}}$, where $s \in R \backslash \mathfrak{q}$. By Lemma 1.4, it is easy to see that f_{s} is an automorphism of A. For every $r \in R, s \in R \backslash \mathfrak{q}, x \in M$, we put $\bar{r}=r+\mathfrak{q}, \bar{s}=s+\mathfrak{q}$ and $\bar{x}=x+P$. Let $x=a+b$, where $a \in A$ and $b \in B$. Since for every $a \in A, f_{s}$ is an automorphism of A, there exists a unique $y \in A$ such that $s y=a$. Now we define the map $K \times \frac{M}{P} \longrightarrow \frac{M}{P}$ by $\frac{\bar{r}}{\bar{s}}$. $(\bar{a}+\bar{b})=\overline{r y}$, where $s y=a$. By reasoning similar to the proof of Theorem 1.5, this map is well-defined and hence $\frac{M}{P}$ is a K-module. Therefore $P \in \Sigma$ and $\operatorname{Spec}(M)=\Sigma$.

Acknowledgments. The authors would like to thank the referee for his/her useful suggestions that improved the presentation of this paper.

References

[1] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.
[2] S. Hedayat and R. Nekooei, Characterization of prime submodules of a finitely generated free module over a PID, Houston J. Math. 31 (2005), no. 1, 75-85.
3] , Prime and radical submodules of free modules over a PID, Houston J. Math. 32 (2006), no. 2, 355-367.
[4] C.-P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul. 33 (1984), no. 1, 61-69.
[5] , Saturations of submodules, Comm. Algebra 31 (2003), no. 6, 2655-2673.
[6] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511-528.
[7] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra 20 (1992), no. 6, 1803-1817.
[8] F. Mirzaei and R. Nekooei, On prime submodules of a finitely generated free module over a commutative ring, Comm. Algebra 44 (2016), no. 9, 3966-3975.
[9] , Characterization of prime submodules of a free module of finite rank over a valuation domain, J. Korean Math. Soc. 54 (2017), no. 1, 59-68.
[10] Z. Pourshafiey and R. Nekooei, On prime submodules of an injective module over a Noetherian domain, to appear.
[11] Y. Tiras and A. Harmanci, and P. F. Smith, A characterization of prime submodules, J. Algebra 212 (1999), no. 2, 743-752.

Reza Nekooei
Department of Pure Mathematics
Faculty of Mathematics and Computer
Shahid Bahonar University of Kerman
Kerman, Iran
Email address: rnekooei@uk.ac.ir
Zahra Pourshafiey
Department of Pure Mathematics
Faculty of Mathematics and Computer
Shahid Bahonar University of Kerman
Kerman, Iran
Email address: zhpoorshafiee@gmail.com

