• 제목/요약/키워드: prime ideals

검색결과 204건 처리시간 0.017초

STRUCTURE OF UNIT-IFP RINGS

  • Lee, Yang
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1257-1268
    • /
    • 2018
  • In this article we first investigate a sort of unit-IFP ring by which Antoine provides very useful information to ring theory in relation with the structure of coefficients of zero-dividing polynomials. Here we are concerned with the whole shape of units and nilpotent elements in such rings. Next we study the properties of unit-IFP rings through group actions of units on nonzero nilpotent elements. We prove that if R is a unit-IFP ring such that there are finite number of orbits under the left (resp., right) action of units on nonzero nilpotent elements, then R satisfies the descending chain condition for nil left (resp., right) ideals of R and the upper nilradical of R is nilpotent.

ON THE NUMBER OF SEMISTAR OPERATIONS OF SOME CLASSES OF PRUFER DOMAINS

  • Mimouni, Abdeslam
    • 대한수학회보
    • /
    • 제56권6호
    • /
    • pp.1485-1495
    • /
    • 2019
  • The purpose of this paper is to compute the number of semistar operations of certain classes of finite dimensional $Pr{\ddot{u}}fer$ domains. We prove that ${\mid}SStar(R){\mid}={\mid}Star(R){\mid}+{\mid}Spec(R){\mid}+ {\mid}Idem(R){\mid}$ where Idem(R) is the set of all nonzero idempotent prime ideals of R if and only if R is a $Pr{\ddot{u}}fer$ domain with Y -graph spectrum, that is, R is a $Pr{\ddot{u}}fer$ domain with exactly two maximal ideals M and N and $Spec(R)=\{(0){\varsubsetneq}P_1{\varsubsetneq}{\cdots}{\varsubsetneq}P_{n-1}{\varsubsetneq}M,N{\mid}P_{n-1}{\varsubsetneq}N\}$. We also characterize non-local $Pr{\ddot{u}}fer$ domains R such that ${\mid}SStar(R){\mid}=7$, respectively ${\mid}SStar(R){\mid}=14$.

S-VERSIONS AND S-GENERALIZATIONS OF IDEMPOTENTS, PURE IDEALS AND STONE TYPE THEOREMS

  • Bayram Ali Ersoy;Unsal Tekir;Eda Yildiz
    • 대한수학회보
    • /
    • 제61권1호
    • /
    • pp.83-92
    • /
    • 2024
  • Let R be a commutative ring with nonzero identity and M be an R-module. In this paper, we first introduce the concept of S-idempotent element of R. Then we give a relation between S-idempotents of R and clopen sets of S-Zariski topology. After that we define S-pure ideal which is a generalization of the notion of pure ideal. In fact, every pure ideal is S-pure but the converse may not be true. Afterwards, we show that there is a relation between S-pure ideals of R and closed sets of S-Zariski topology that are stable under generalization.

A RESULT ON GENERALIZED DERIVATIONS WITH ENGEL CONDITIONS ON ONE-SIDED IDEALS

  • Demir, Cagri;Argac, Nurcan
    • 대한수학회지
    • /
    • 제47권3호
    • /
    • pp.483-494
    • /
    • 2010
  • Let R be a non-commutative prime ring and I a non-zero left ideal of R. Let U be the left Utumi quotient ring of R and C be the center of U and k, m, n, r fixed positive integers. If there exists a generalized derivation g of R such that $[g(x^m)x^n,\;x^r]_k\;=\;0$ for all x $\in$ I, then there exists a $\in$ U such that g(x) = xa for all x $\in$ R except when $R\;{\cong}\;=M_2$(GF(2)) and I[I, I] = 0.

COHOMOLOGY GROUPS OF CIRCULAR UNITS

  • Kim, Jae-Moon;Oh, Seung-Ik
    • 대한수학회지
    • /
    • 제38권3호
    • /
    • pp.623-631
    • /
    • 2001
  • Let $\kappa$ be a real abelian field of conductor f and $\kappa$(sub)$\infty$ = ∪(sub)n$\geq$0$\kappa$(sub)n be its Z(sub)p-extension for an odd prime p such that płf$\phi$(f). he aim of this paper is ot compute the cohomology groups of circular units. For m>n$\geq$0, let G(sub)m,n be the Galois group Gal($\kappa$(sub)m/$\kappa$(sub)n) and C(sub)m be the group of circular units of $\kappa$(sub)m. Let l be the number of prime ideals of $\kappa$ above p. Then, for mm>n$\geq$0, we have (1) C(sub)m(sup)G(sub)m,n = C(sub)n, (2) H(sup)i(G(sub)m,n, C(sub)m) = (Z/p(sup)m-n Z)(sup)l-1 if i is even, (3) H(sup)i(G(sub)m,n, C(sub)m) = (Z/P(sup)m-n Z)(sup l) if i is odd (※Equations, See Full-text).

  • PDF

GRADED w-NOETHERIAN MODULES OVER GRADED RINGS

  • Wu, Xiaoying
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1319-1334
    • /
    • 2020
  • In this paper, we study the basic theory of the category of graded w-Noetherian modules over a graded ring R. Some elementary concepts, such as w-envelope of graded modules, graded w-Noetherian rings and so on, are introduced. It is shown that: (1) A graded domain R is graded w-Noetherian if and only if Rg𝔪 is a graded Noetherian ring for any gr-maximal w-ideal m of R, and there are only finite numbers of gr-maximal w-ideals including a for any nonzero homogeneous element a. (2) Let R be a strongly graded ring. Then R is a graded w-Noetherian ring if and only if Re is a w-Noetherian ring. (3) Let R be a graded w-Noetherian domain and let a ∈ R be a homogeneous element. Suppose 𝖕 is a minimal graded prime ideal of (a). Then the graded height of the graded prime ideal 𝖕 is at most 1.

ON FULLY IDEMPOTENT RINGS

  • Jeon, Young-Cheol;Kim, Nam-Kyun;Lee, Yang
    • 대한수학회보
    • /
    • 제47권4호
    • /
    • pp.715-726
    • /
    • 2010
  • We continue the study of fully idempotent rings initiated by Courter. It is shown that a (semi)prime ring, but not fully idempotent, can be always constructed from any (semi)prime ring. It is shown that the full idempotence is both Morita invariant and a hereditary radical property, obtaining $hs(Mat_n(R))\;=\;Mat_n(hs(R))$ for any ring R where hs(-) means the sum of all fully idempotent ideals. A non-semiprimitive fully idempotent ring with identity is constructed from the Smoktunowicz's simple nil ring. It is proved that the full idempotence is preserved by the classical quotient rings. More properties of fully idempotent rings are examined and necessary examples are found or constructed in the process.

AN ACTION OF A GALOIS GROUP ON A TENSOR PRODUCT

  • Hwang, Yoon-Sung
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.645-648
    • /
    • 2005
  • Let K be a Galois extension of a field F with G = Gal(K/F). Let L be an extension of F such that $K\;{\otimes}_F\;L\;=\; N_1\;{\oplus}N_2\;{\oplus}{\cdots}{\oplus}N_k$ with corresponding primitive idempotents $e_1,\;e_2,{\cdots},e_k$, where Ni's are fields. Then G acts on $\{e_1,\;e_2,{\cdots},e_k\}$ transitively and $Gal(N_1/K)\;{\cong}\;\{\sigma\;{\in}\;G\;/\;{\sigma}(e_1)\;=\;e_1\}$. And, let R be a commutative F-algebra, and let P be a prime ideal of R. Let T = $K\;{\otimes}_F\;R$, and suppose there are only finitely many prime ideals $Q_1,\;Q_2,{\cdots},Q_k$ of T with $Q_i\;{\cap}\;R\;=\;P$. Then G acts transitively on $\{Q_1,\;Q_2,{\cdots},Q_k\},\;and\;Gal(qf(T/Q_1)/qf(R/P))\;{\cong}\;\{\sigma{\in}\;G/\;{\sigma}-(Q_1)\;=\;Q_1\}$ where qf($T/Q_1$) is the quotient field of $T/Q_1$.

A COVERING CONDITION FOR THE PRIME SPECTRUMS

  • Hwang, Chul-Ju
    • East Asian mathematical journal
    • /
    • 제21권1호
    • /
    • pp.61-64
    • /
    • 2005
  • Let R be a commutative ring with identity, and let $f,\;g_i(i=1,\;\ldots,\;n),\;g_{\alpha}(\alpha{\in}S)$ be elements of R. We show that the following statements are equivalent; (i) $X_f{\subseteq}{\cup}_{\alpha{\in}S}X_{g\alpha}$ only if $X_f{\subseteq}X_{g\alpha}$ for some $\alpha{\in}S$, (ii) $V(f){\subseteq}{\cup}_{\alpha{\in}S}V(g_{\alpha})$ only if $V(f){\subseteq}V(g_{\alpha})$ for some $\alpha{\in}S$, (iii) $V(f){\subseteq}{\cup}^n_{i=1}V(g_i)$ only if $V(f){\subseteq}V(g_i)$ for some i, (iv) Spec(R) is linearly ordered under inclusion.

  • PDF

QUOTIENT RINGS INDUCED VIA FUZZY IDEALS

  • Liu, Yong-Lin;Meng, Jie;Xin, Xiao-Long
    • Journal of applied mathematics & informatics
    • /
    • 제8권3호
    • /
    • pp.855-867
    • /
    • 2001
  • This note we give a construction of a quotient ring $R/{\mu}$ induced via a fuzzy ideal ${\mu}$ in a ring R. The Fuzzy First, Second and Third Isomorphism Theorems are established. For some applications of this construction of quotient rings, we show that if ${\mu}$ is a fuzzy ideal of a commutative ring R, then $\mu$ is prime (resp. $R/{\mu}$ is a field, every zero divisor in $R/{\mu}$ is nilpotent). Moreover we give a simpler characterization of fuzzy maximal ideal of a ring.