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COHOMOLOGY GROUPS OF CIRCULAR UNITS
JAE Moon KM AND SEUNG IK OH

ABSTRACT. Let k be a real abelian field of conductor f and koo =
Un>okn be its Zp-extension for an odd prime p such that p{ fo(f).
The aim of this paper is to compute the cohomology groups of
circular units. For m > n > 0, let Gy, n be the Galois group
Gal(km /kn) and Cr, be the group of circular units of ky,. Let I be
the number of prime ideals of k above p. Then, form > n > 0, we
have

(1) C™" = Ch,
(2) H (Gm,n,Cm) =~ (Z/p™ "Z)'~1 if i is even,
(3) H (Gm,n,Cm) = (Z/p™~"Z) if i is odd.

1. Introduction

Let k be a real abelian field of conductor f. For each prime p, let
koo = U, 50 kn be the (basic) Zy-extension of k. For technical reasons,
we will assume that p is an odd prime such that p { fi(f). Under this
assumption, primes of & above p totally ramify in k,, for all n > 0. Let
[ be the number of prime ideals of k& above p.

For m > n > 0, we denote the Galois group Gal(k,,/k,) by Gm,n and
the norm map from k, to k, by Ny, .. Let C,, be the group of circular
units of k, as was defined by Sinnott([7]). The aim of this paper is to
compute the following cohomology groups of C,:

THEOREM. For m > n > 0, we have

(1) gm!n = Cna

(2) HY{Gmn,Cm) = (Z/p™ ML) ifi is even,
(3) H{Gmn,Cm) = (Z/p™"Z) if i is odd.
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Since G, -, is cyclie, I’-fi(Gm,n, Cr) = HY(Grny Crm) = C'gm'“/Nm,nCm
if 4 is even, and ﬁi(Gm,n,Cm) ~ PI“I(Gm,n,Cm) ~ Nm,ncm/c:i:m‘l
if i is odd, where 0y, is a generator of G- So it suffices to show (2)
and (3) for i = ¢ and —1, respectively.

Special cases such as when the conductor f is a prime or divisible by
two primes were studied in [5] and [1], respectively. The structure of
circular units becomes much more complicated as f has more distinct
prime divisors. Thus the above theorem not only generalizes previous
results but also shows that the cohomology groups of circular units are
as simple as one can expect when compared to the cohomology groups
of full units([3]).

The outline and the basic ideas of this paper are taken from [4], where
cohomology groups of cyclotomic units are studied. And this paper
generalizes the results of [4] about cyclotomic units in cyclotomic fields
to circular units in abelian fields. The proof of (3) in the above theorem
is especially similar to the corresponding one in [4], and so it could have
been omitted. However we decided to include it for completeness.

2. Preliminaries and notations

In this section, we briefly review the definitions of cyclotomic units
and circular units. Index theorems discovered by Sinnott are also in-
troduced. Then we set up notations which will be used throughout this

paper.
2.1. Cyclotomic units and circular units

Let n # 2 mod 4, {, be an nth primitive root of 1, and V be the
multiplicative subgroup of Q(¢,.)* generated by

{£Cn,1-¢2|1<a<n—1}

Let E be the group of units of Q(¢,,) and define C =V N E. C is called
the group of cyclotomic units of Q(¢,). For k = Q((n + ¢ 1), we define
the group of cyclotomic units of & by C* = E* N C, where Et is the
group of units of k.

The group of cyclotomic units carries important information of k. To
be precise, let k™ be the class number of k. Then the index theorem of
Sinnott([8]) says that [E+ : CF] = 2°h " for some nonnegative integer b.
This can be thought of as an algebraic version the analytic class number
formula.
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In general, for an abelian field F, Sinnott([8]) defines the group of
circular units of F' as follows. For each n > 2, let

Cr, = Nt/ rraten) Catcn)

where Cgy¢,.) is the group of cyclotomic units of Q(¢,}. Then the group
Cr of circular units of F' is defined to be the multiplicative subgroup of
F* generated by Cy, for all n > 2 together with —1. Strictly speaking,
the above definition is slightly different from the one given by Sinnott in
[7]. But, since these two agree, we take the above one as the definition of
circular units. Note that if ' C L, then Ny ;p(Cr) C Cr C Cfal(L/F),
where N, is the norm map from L to F. We will use this remark
in the subsequent sections without comment. The index theorem of
Sinnott([7]) says:

INDEX THEOREM. Let Ep be the unit group of £ and h be the class
number of the maximal real subfield of F. Then [EF : Cp| = cph for
some integer cp.

2.2. Notations
For each integer s > 1, we choose a primitive sth root {, of 1 so

that Cf = (, if s|t. Let k be a real abelian field of conductor f and let
kso = U,>pkn be its Zp-extension. Note that k& admits a unique Z,-
extension for each prime p, namely the basic Zy-extension. Throughout
this paper, we assume that p is an odd prime such that p { fo(f),
where ¢ is the Euler ¢ function. For each n > 0, we denote the group of
circular units of k, by C,,. Let K = Q((y), F = Q((,) and K’ = Q((,f).
We denote their basic Z,-extensions by K, Foo, and K., respectively.
The nth layers of these Z,-extensions are denoted by K,, F, and K,
as usual. Let ¢ be the topological generator of the Galois group I' =
Gal(K.,/K') which sends {y» to (j;;" P for all n > 1. Restrictions of o to
various subfields are also denoted by o. We abbreviate o¥" by o,,. Thus
oy is a topological generator of Gal{ K. /K]).

~ Let k) be the decomposition subfield of k for p and let A = Gal(K/k),
A = Gal(K/Q), A, = Gal(K/ky), Ar = Gal(k/Q) and A, =
Gal(k(p) /Q). Let [k, : Q] =1, so there are [ prime ideals in k above p.
Elements of A, A or A, will be denoted by 7’s and those of Ay and Ay ,,
by p’s. The Frobenius automorphism of K for p or its restriction to & is

denoted by 7,. For each d such that d|f, let k4 = Q(¢z) Nk and k((g;

be the decomposition subfield of k(9 for p. Let Al = Gal(Q(¢y) /%),
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A = Gal(Q(Cn)/Q), A = Gal(Q(Ca)/k)), ALY = Gal(k@/Q) and
d d

AW = Gal(k) /Q).
Let R be the set of all roots of 1 in Z,, i.e., R = {w € Zy|wP™t =1}.

Then R can be regarded as the Galois group Gal(F/Q) or as any Galois
group isomorphic to it such as Gal(F,/Q,), where Q, is the subfield
of F,, of degree p™ over Q. For m > n, let Gy be the Galois group
Gal(K!,/K") and N, » the norm map Ny, /i, from K, to K. Gm,n
will also mean the Galois groups Gal(kn, /kr), Gal(Fy,/F,) and Gal(Qy,/
B@,). Similarly N,, ,, will have various meanings.

m,n

3. Computation of C‘g

We keep all the previous notations. In this section, we will prove
Cmm'n - Cn-

Proof of Theorem (1). Obviously, C,, C cEmr. To prove Comm ¢
C,, take u € Oﬁ""". We will show that ¢ € C, and " = € Cy,
where d = [Q((ps) : k]. Then, since (d,p™ ") = 1, we will have u € C,,.

First, we view u as an element in C,,™", where C; is the group of
. . . - —=CGm.n =1
cyclotomic units of K’ for each integer s > 0. Since C,,"" = Cr([2]},

4 is a cyclotomic unit in K},. Thus Ny s, (u) € C,. But since u €
K! Nk, Cky,

NK;/kn(u) =ule Ch.
Next, note that w?~ = N, »(u) since u is fixed under Gy, . Thus

upm——ﬂ = Nkm/kn (U) E C,n_
This finishes the proof. O
4, Computation of H N (C oy
In this section we will prove
HY Gy ) = (Z/p™"Z) L

First we need two lemmas.
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LEMMA 1. Form > n > 0, Cp, = CgNy,nCin.

Proof. Clearly, Cp, D CoNy, nCry. To prove the converse, note that
an element © of C,, can be written as u = ugu - - - u,, where ug € Cy,
and for each 5,1 < s < n, u, is of the form

w=[T IT I G —cpmses

d|f 1<i<p® weR
preal? rea

for some integers a; ;4. Since

N s (L] (€ = €0 = (¢85 =57 ),

W, T W, T
we have
-2 -
[ =) = G =7 ™
w,T W, T
= N o [ [ (Gomis =GN+
W, T

= Nown([[ Qs = GD)S 7 Tosicon=e 7
w,T

So for each s >°1, ug € Ny nCpy, and thus u € CyNp, Cry. This proves
Lerama 1. O

By rank A for a finitely generated abelian group A, we mean the
Z-rank of the free part of A.

LEMMA 2. rank Nk/k(p)CO =[-1.

Proof. Let C(,) be the group of circular units of k(). Note that

kD Nk = k((sg. Hence for a € k(@

g (d)
N kg () = Nk(d)/kég;(a)[k.k Fol.
Therefore

C(g;{)f) C Nk/k(p) (Co) C C(p) C Ek(p)’

where Ek(p; is the group of units of k. Note that [Ej, : Cip) is
finite by the index theorem of Sinnott. Since Cy,,) is a finitely generated



628 Jae Moon Kim and Seung Ik Oh

abelian group, [C,y : CE‘; ()f )] is also finite. Thus N, Jkeyy Co 18 of finite
index in the full unit group FEk,,,- Therefore,

rank N}c/k(p)CO = rank Ek(p) = [k(p) : Q] —1=!-1.

This finishes the proof of Lemma 2. a
Now we compute fIO(Gm,n, Cm).

Proof of Theorem (2). Since C, = CoNy nCh by Lemma 1, the
natural map
CO —Cp — Cn/Nm,nCm

is surjective. Thus

ﬁO(Gm,n: Cm) ~ Cgm'n/Nm,nCm =~ Cn/Nm,nCm = C"O/C’O N Nm,ncm-
Let C!, be the subgroup of C,, generated by circular units of the form

IT €=,
wER,TEA)
where p™*! 4 a, and d | f. Then clearly C, = CGoC%, and Ny, ,Cl, =
C!. Hence Ny, nCp = CP" " C'. Therefore
HYGrpy Cm) = Co/ConCE™ " Cl = Co/CE™ " (Con C).

Next we claim that Cg"*l C Con @), C nyCo, where yCy = {u €
Co | Nyjk,,,u = 1}. The first inclusion follows from the identity

(1-¢a)t = [l (2 - ¢

To check the second one, take u € Cy N C}, and write u as

u=[[ [T II (G&e—cinyier
dlf b weRreAld
P"'Hfa,
for some integers f(e,b,d). By taking N, o, we have
" ot crygled cryale,d){rp—
W= H (¢¥ —¢§ )9( ) _ H (1 — cer)sed(m=1)

e, d,w,T c,d, 7
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for some integers g(c,d). Therefore N, /k(p)upn = 1 and the second

inclusion follows. Since yCh/ C'g”_l is annihilated by [k : @], which is
prime to p, we obtain

HY Gy Cr) 2 Co/CE" " (Con CL) = Co /CE™ " nC.

For convenience, we denote Ny, Jkp Simply by N. By Lemma 2, we
know that NCy modulo {#1} is a free abelian group of rank ! — 1. Let
1,82, &1 be elements of Cy such that {N (&), N(&2),--- ,N(&-1)}
generates NCy modulo {£1}. Let C} be the subgroup of Cj generated

by {&1,82,-++ ,&—1}. Then
[Co : CynCol = [NCy : NCG][nCo : NCo] =1 or 2.

Therefore

. e G INC
HO Gm . Cm ~ (515 :gl 1)1}" 0
(Gom, ) (€1, &G-1)P" NG

as desired. O

~ (Z/p™ " E) !

5. Computation of ﬁ_l(Gm,n,Cm)

In this section, we will prave

H ™ (G, Cm) = (Z/p™ LY.

LEMMA 3. Let n < m <s. If § € Cp, is such that N, .6 =1, then
§ € Ny mCe.

Proof. Suppose § € C,, satisfies Ny, ,6 = 1. In Section 4, we proved
that Co = (£1){&,...,&-1)nCo. S0 Cr = CoC), = (F1) (&1, ., & )N
CoCr,. Thus we can write § = +fuv, for some £ € (¢&1,...,&_1),
u € yCo and v € CJ,. Then 1 = Ny, .6 = £67" "u?" " N,, ,v. Since
v € Cpyy Nppv € C. Hence Ny, v = €77 u P " 2 Cyn Cl C

~Co. Therefore, we have €7 " w = +1, where w = uf’m_"Nm,nU e nCo.

m—n

This implies that &P = =1, and thus we obtain £ = +1. Hence
d = Fuw.
Note that u* € CoNCY, C C,, where t = [yCy : Co N C?.], which

is finite and prime to p. Therefore §2° = w?'4? € C/ N, mCs. Since

a—m

O0F " = Ny m(d) € N, nC,, we have § € N, ,,,C, as desired. O
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Proof of Theorem (3). We prove the theorem by induction on m 2
n+1. Let m = n+ 1. Since the Herbrand quotient for Cy, is 1/p([6]}
and since pH(Gm.n,Cm) = 0, ﬁl(Gm,n,Cm) must be (Z/pZ).

Assuming the result for m, we will prove i UGy, Cs) = (Z/p* L)
when s = m + 1. Since the inflation map

AY(Gryn, CS=m) "5 HY (G n, C)

is injective, we may identify H YG .y Cre) with its image (we know
that CE*™ = C,,). Let [6] be an element in fl‘l(Gm,n,Cm). Since
that § = N, € for some £ € C, by Lemma 3, we have

gP
Ns,mg

[gp] = [(Ns,mg) ] = [Ns,mg] = [51

Hence I’:‘Il(Gmm, Cm) ™ fI‘l(Gm,n, Crn) = Ny o Crn/CZr 1 is the image
of
p: H Y Gy, Cs) 23 H Gy, Cs)-

Namely =G n,Cm) = pHY(Gyn,C,). Since P H NG, Cs) =
0 and since the Herbrand quotient for C, is p*~ ™, H'(Gs n, Cy) must be
(Z/p*~Z). O

CoROLLARY. Let T' = Gal(keo/k) and Coo = |J,,59 Cn. Then
(1) HY(T,Co) = (Qu/Zyp)'
(2) H(T,Coo0) = (Qp/Zp)"

Proof. Since C,, = C™™ by Theorem (1), we have C,, = CL7, where
I'n = Gal{keo/kr). Hence, fori =1,2,

HY(T,Cs) = lim H (G, CLT)
= hg}Hl(Gna C'n)

_ [ Lm(Z/p"Z) ifi=1

a { Lm(Z/p"2)' =" ifi=2

B { (Qp/Zp) ifi=1

Tl @z, ifi=2. .
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