• Title/Summary/Keyword: prime endomorphism

Search Result 18, Processing Time 0.019 seconds

ON SUBMODULES INDUCING PRIME IDEALS OF ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.33-48
    • /
    • 2000
  • In this paper, for any ring R with an identity, in order to study prime ideals of the endomorphism ring $End_R$(M) of left R-module $_RM$, meet-prime submodules, prime radical, sum-prime submodules and the prime socle of a module are defined. Some relations of the prime radical, the prime socle of a module and the prime radical of the endomorphism ring of a module are investigated. It is revealed that meet-prime(or sum-prime) modules and semi-meet-prime(or semi-sum-prime) modules have their prime, semi-prime endomorphism rings, respectively.

  • PDF

MODULES WITH PRIME ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.5
    • /
    • pp.987-1030
    • /
    • 2001
  • Some discrimination of modules whose endomorhism rings are prime is introduced, by means of structures of submodules inducing prime ideals of the endomorphism ring End(sub)R (M) of a left R-module (sub)RM over a ring R. Modules with non-prime endomorphism rings are contrapositively studied as well.

  • PDF

CERTAIN DISCRIMINATIONS OF PRIME ENDOMORPHISM AND PRIME MATRIX

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • v.14 no.2
    • /
    • pp.259-268
    • /
    • 1998
  • In this paper, for a commutative ring R with an identity, considering the endomorphism ring $End_R$(M) of left R-module $_RM$ which is (quasi-)injective or (quasi-)projective, some discriminations of prime endomorphism were found as follows: each epimorphism with the irreducible(or simple) kernel on a (quasi-)injective module and each monomorphism with maximal image on a (quasi-)projective module are prime. It was shown that for a field F, any given square matrix in $Mat_{n{\times}n}$(F) with maximal image and irreducible kernel is a prime matrix, furthermore, any given matrix in $Mat_{n{\times}n}$(F) for any field F can be factored into a product of prime matrices.

  • PDF

ENDOMORPHISMS, ANTI-ENDOMORPHISMS AND BI-SEMIDERIVATIONS ON RINGS

  • ABU ZAID ANSARI;FAIZA SHUJAT;AHLAM FALLATAH
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.199-206
    • /
    • 2024
  • The goal of this study is to bring out the following conclusion: Let 𝓡 be a non-commutative prime ring of characteristic not two and 𝓓 be a bi-semiderivation on 𝓡 with a function 𝖋 (surjective). If 𝓓 acts as an endomorphism or as an anti-endomorphism, then 𝓓 = 0 on 𝓡.

PRIME RADICALS IN ORE EXTENSIONS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2002
  • Let R be a ring with an endomorphism $\sigma$ and a derivation $\delta$. An ideal I of R is ($\sigma,\;\delta$)-ideal of R if $\sigma(I){\subseteq}I$ and $\delta(I){\subseteq}I$. An ideal P of R is a ($\sigma,\;\delta$)-prime ideal of R if P(${\neq}R$) is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideals I and J of R, $IJ{\subseteq}P$ implies that $I{\subseteq}P$ or $J{\subseteq}P$. An ideal Q of R is ($\sigma,\;\delta$)-semiprime ideal of R if Q is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideal I of R, $I^2{\subseteq}Q$ implies that $I{\subseteq}Q$. The ($\sigma,\;\delta$)-prime radical (resp. prime radical) is defined by the intersection of all ($\sigma,\;\delta$)-prime ideals (resp. prime ideals) of R and is denoted by $P_{(\sigma,\delta)}(R)$(resp. P(R)). In this paper, the following results are obtained: (1) $P_{(\sigma,\delta)}(R)$ is the smallest ($\sigma,\;\delta$)-semiprime ideal of R; (2) For every extended endomorphism $\bar{\sigma}$ of $\sigma$, the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x;\sigma,\delta])$ is equal to $P_{\sigma,\delta}(R)[x;\sigma,\delta]$.

  • PDF

OPENLY SEMIPRIMITIVE PROJECTIVE MODULE

  • Bae, Soon-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.619-637
    • /
    • 2004
  • In this paper, a left module over an associative ring with identity is defined to be openly semiprimitive (strongly semiprimitive, respectively) by the zero intersection of all maximal open fully invariant submodules (all maximal open submodules which are fully invariant, respectively) of it. For any projective module, the openly semiprimitivity of the projective module is an equivalent condition of the semiprimitivity of endomorphism ring of the projective module and the strongly semiprimitivity of the projective module is an equivalent condition of the endomorphism ring of the projective module being a sub direct product of a set of subdivisions of division rings.

SOME RESULTS ON ENDOMORPHISMS OF PRIME RING WHICH ARE $(\sigma,\tau)$-DERIVATION

  • Golbasi, Oznur;Aydin, Neset
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.195-203
    • /
    • 2002
  • Let R be a prime ring with characteristic not two and U is a nonzero left ideal of R which contains no nonzero nilpotent right ideal as a ring. For a $(\sigma,\tau)$-derivation d : R$\rightarrow$R, we prove the following results: (1) If d is an endomorphism on R then d=0. (2) If d is an anti-endomorphism on R then d=0. (3) If d(xy)=d(yx), for all x, y$\in$R then R is commutative. (4) If d is an homomorphism or anti-homomorphism on U then d=0.

  • PDF

MULTIPLICATION MODULES WHOSE ENDOMORPHISM RINGS ARE INTEGRAL DOMAINS

  • Lee, Sang-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1053-1066
    • /
    • 2010
  • In this paper, several properties of endomorphism rings of modules are investigated. A multiplication module M over a commutative ring R induces a commutative ring $M^*$ of endomorphisms of M and hence the relation between the prime (maximal) submodules of M and the prime (maximal) ideals of $M^*$ can be found. In particular, two classes of ideals of $M^*$ are discussed in this paper: one is of the form $G_{M^*}\;(M,\;N)\;=\;\{f\;{\in}\;M^*\;|\;f(M)\;{\subseteq}\;N\}$ and the other is of the form $G_{M^*}\;(N,\;0)\;=\;\{f\;{\in}\;M^*\;|\;f(N)\;=\;0\}$ for a submodule N of M.

FULLY PRIME MODULES AND FULLY SEMIPRIME MODULES

  • Beachy, John A.;Medina-Barcenas, Mauricio
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1177-1193
    • /
    • 2020
  • Fully prime rings (in which every proper ideal is prime) have been studied by Blair and Tsutsui, and fully semiprime rings (in which every proper ideal is semiprime) have been studied by Courter. For a given module M, we introduce the notions of a fully prime module and a fully semiprime module, and extend certain results of Blair, Tsutsui, and Courter to the category subgenerated by M. We also consider the relationship between the conditions (1) M is a fully prime (semiprime) module, and (2) the endomorphism ring of M is a fully prime (semiprime) ring.