The various studies of combining neural network and hidden Markov models within a single system are done with expectations that it may potentially combine the advantages of both systems. With the influence of these studies, tandem approach was presented to use neural network as the classifier and hidden Markov models as the decoder. In this paper, we applied the trend information of segmental features to tandem architecture and used posterior probabilities, which are the output of neural network, as inputs of recognition system. The experiments are performed on Aurora2 database to examine the potentiality of the trend feature based tandem architecture. The proposed method shows the better results than the baseline system on very low SNR environments.
한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
/
pp.225-230
/
1998
In this paper, a Kalman filter approach for enhancing speech signals degraded by statistically independent additive nonstationary noise is developed. The autoregressive hidden markov model is used for modeling the statistical characteristics of both the clean speech signal and the nonstationary noise process. In this case, the speech enhancement comprises a weighted sum of conditional mean estimators for the composite states of the models for the speech and noise, where the weights equal to the posterior probabilities of the composite states, given the noisy speech. The conditional mean estimators use a smoothing spproach based on two Kalmean filters with Markovian switching coefficients, where one of the filters propagates in the forward-time direction with one frame. The proposed method is tested against the noisy speech signals degraded by Gaussian colored noise or nonstationary noise at various input signal-to-noise ratios. An app개ximate improvement of 4.7-5.2 dB is SNR is achieved at input SNR 10 and 15 dB. Also, in a comparison of conventional and the proposed methods, an improvement of the about 0.3 dB in SNR is obtained with our proposed method.
A nonparametric Bayesian multiple comparisons problem (MCP) for dependence parameters in I bivariate exponential populations is studied here. A simple method for pairwise comparisons of these parameters is also suggested. Here we extend the methodology studied by Gopalan and Berry (1998) using Dirichlet process priors. The family of Dirichlet process priors is applied in the form of baseline prior and likelihood combination to provide the comparisons. Computation of the posterior probabilities of all possible hypotheses are carried out through Markov Chain Monte Carlo method, namely, Gibbs sampling, due to the intractability of analytic evaluation. The whole process of MCP for the dependent parameters of bivariate exponential populations is illustrated through a numerical example.
Journal of the Korean Data and Information Science Society
/
제21권6호
/
pp.1327-1335
/
2010
In this paper, we want to develop objective priors for the common location parameter in two half-t distributions with unequal scale parameters. The half-t distribution is a non-regular class of distribution. One can not develop the reference prior by using the algorithm of Berger of Bernardo (1989). Specially, we derive the reference priors and prove the propriety of joint posterior distribution under the developed priors. Through the simulation study, we show that the proposed reference prior matches the target coverage probabilities in a frequentist sense.
We construct the procedure to predict safety accidents following Bayesian approach. We make a model that can utilize the data to predict other levels of accidents. An event tree model which is a frequently used graphical tool in describing accident initiation and escalation to more severe accident is transformed into an influence diagram model. Prior distributions for accident occurrence rate and probabilities to escalating to more severe accidents are assumed and likelihood of number of accidents in a given period of time is assessed. And then posterior distributions are obtained based on observed data. We also points out the advantages of the bayesian approach that estimates the whole distribution of accident rate over the classical point estimation.
Journal of the Korean Data and Information Science Society
/
제23권2호
/
pp.353-363
/
2012
In this paper, we introduce the noninformative priors such as the matching priors and the reference priors for the common scale parameter in the Pareto distributions. It turns out that the posterior distribution under the reference priors is not proper, and Jeffreys' prior is not a matching prior. It is shown that the proposed first order prior matches the target coverage probabilities in a frequentist sense through simulation study.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.81-81
/
2002
Classification is considered as one of the processes of extracting attributes from satellite imagery and is one of the usual functions in the commercial satellite image processing software. Accuracy of classification plays a key role in deciding the usage of its results. Many tremendous efforts far the higher accuracy have been done in such fields; training area selection, classification algorithm. Our research is one of these effort in different manners. In this research, we conduct classification using multiple satellite image data and evidential approach. We statistically consider the posterior probabilities and certainty in maximum likelihood classification and methodologically Dempster's orthogonal sums. Unfortunately, accuracy for the whole data sets has not assessed yet, but accuracy assessments in training fields and check fields shows accuracy improvement over 10% in overall accuracy and over 0.1 in kappa index.
We consider 'efficiency versus privacy-protection' problem concerned with several well-known randomized response (RR) devices to estimate proportion of people bearing a stigmatizing characteristic in a community. The literature of RR on respondent's privacy protection discusses only about response specific jeopardy measures. We propose a measure of jeopardy that is independent of the RR offered by the interviewee and recommend it for using as a technical characteristic of the RR device. For ensuring better cooperation from the interviewees this new measure that depends only on the design parameters of the RR devices may be disclosed to the respondents before producing the RR by implementing the randomization device.
In general, common cause failures (CCFs) have been modeled with the assumption that components within the same group are symmetric. This assumption reduces the number of parameters required for the CCF probability estimation and allows us to use a parametric model, such as the alpha factor model. Although there are various asymmetric conditions in nuclear power plants (NPPs) to be addressed, the traditional CCF models are limited to symmetric conditions. Therefore, this paper proposes the copulabased CCF model to deal with asymmetric as well as symmetric CCFs. Once a joint distribution between the components is constructed using copulas, the proposed model is able to provide the probability of common cause basic events (CCBEs) by formulating a system of equations without symmetry assumptions. In addition, Bayesian inferences for the parameters of the marginal and copula distributions are introduced and Markov Chain Monte Carlo (MCMC) algorithms are employed to sample from the posterior distribution. Three example cases using simulated data, including asymmetry conditions in total failure probabilities and/or dependencies, are illustrated. Consequently, the copula-based CCF model provides appropriate estimates of CCFs for asymmetric conditions. This paper also discusses the limitations and notes on the proposed method.
Fall detection and prevention technologies play a pivotal role in ensuring the well-being of individuals, particularly those living independently, where falls can result in severe consequences. This paper addresses the challenge of accurate and quick fall detection by proposing a Bayesian probability-based measure applied to surface electromyography (sEMG) signals. The proposed algorithm based on a Bayesian filter that divides the sEMG signal into transient and steady states. The ratio of posterior probabilities, considering the inclusion or exclusion of the transient state, serves as a scale to gauge the dominance of the transient state in the current signal. Experimental results demonstrate that this approach enhances the accuracy and expedites the detection time compared to existing methods. The study suggests broader applications beyond fall detection, anticipating future research in diverse human-robot interface benefiting from the proposed methodology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.