• 제목/요약/키워드: posterior probabilities

검색결과 97건 처리시간 0.025초

탠덤 구조를 이용한 강인한 음성 인식 시스템 설계 (Design of Robust Speech Recognition System Using Tandem Architecture)

  • 윤영선;이윤근
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2007년도 한국음성과학회 공동학술대회 발표논문집
    • /
    • pp.323-326
    • /
    • 2007
  • The various studies of combining neural network and hidden Markov models within a single system are done with expectations that it may potentially combine the advantages of both systems. With the influence of these studies, tandem approach was presented to use neural network as the classifier and hidden Markov models as the decoder. In this paper, we applied the trend information of segmental features to tandem architecture and used posterior probabilities, which are the output of neural network, as inputs of recognition system. The experiments are performed on Aurora2 database to examine the potentiality of the trend feature based tandem architecture. The proposed method shows the better results than the baseline system on very low SNR environments.

  • PDF

다중칼만필터를 이용한 음성향상 (Speech Enhancement Using Multiple Kalman Filter)

  • 이기용
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.225-230
    • /
    • 1998
  • In this paper, a Kalman filter approach for enhancing speech signals degraded by statistically independent additive nonstationary noise is developed. The autoregressive hidden markov model is used for modeling the statistical characteristics of both the clean speech signal and the nonstationary noise process. In this case, the speech enhancement comprises a weighted sum of conditional mean estimators for the composite states of the models for the speech and noise, where the weights equal to the posterior probabilities of the composite states, given the noisy speech. The conditional mean estimators use a smoothing spproach based on two Kalmean filters with Markovian switching coefficients, where one of the filters propagates in the forward-time direction with one frame. The proposed method is tested against the noisy speech signals degraded by Gaussian colored noise or nonstationary noise at various input signal-to-noise ratios. An app개ximate improvement of 4.7-5.2 dB is SNR is achieved at input SNR 10 and 15 dB. Also, in a comparison of conventional and the proposed methods, an improvement of the about 0.3 dB in SNR is obtained with our proposed method.

  • PDF

Nonparametric Bayesian Multiple Comparisons for Dependence Parameter in Bivariate Exponential Populations

  • 조장식
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.71-80
    • /
    • 2006
  • A nonparametric Bayesian multiple comparisons problem (MCP) for dependence parameters in I bivariate exponential populations is studied here. A simple method for pairwise comparisons of these parameters is also suggested. Here we extend the methodology studied by Gopalan and Berry (1998) using Dirichlet process priors. The family of Dirichlet process priors is applied in the form of baseline prior and likelihood combination to provide the comparisons. Computation of the posterior probabilities of all possible hypotheses are carried out through Markov Chain Monte Carlo method, namely, Gibbs sampling, due to the intractability of analytic evaluation. The whole process of MCP for the dependent parameters of bivariate exponential populations is illustrated through a numerical example.

  • PDF

Noninformative priors for the common location parameter in half-t distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권6호
    • /
    • pp.1327-1335
    • /
    • 2010
  • In this paper, we want to develop objective priors for the common location parameter in two half-t distributions with unequal scale parameters. The half-t distribution is a non-regular class of distribution. One can not develop the reference prior by using the algorithm of Berger of Bernardo (1989). Specially, we derive the reference priors and prove the propriety of joint posterior distribution under the developed priors. Through the simulation study, we show that the proposed reference prior matches the target coverage probabilities in a frequentist sense.

베이지안 기법을 이용한 안전사고 예측기법 (Safety Analysis using bayesian approach)

  • 양희중
    • 대한안전경영과학회지
    • /
    • 제9권5호
    • /
    • pp.1-5
    • /
    • 2007
  • We construct the procedure to predict safety accidents following Bayesian approach. We make a model that can utilize the data to predict other levels of accidents. An event tree model which is a frequently used graphical tool in describing accident initiation and escalation to more severe accident is transformed into an influence diagram model. Prior distributions for accident occurrence rate and probabilities to escalating to more severe accidents are assumed and likelihood of number of accidents in a given period of time is assessed. And then posterior distributions are obtained based on observed data. We also points out the advantages of the bayesian approach that estimates the whole distribution of accident rate over the classical point estimation.

Noninformative priors for common scale parameter in the regular Pareto distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Kim, Yong-Ku
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권2호
    • /
    • pp.353-363
    • /
    • 2012
  • In this paper, we introduce the noninformative priors such as the matching priors and the reference priors for the common scale parameter in the Pareto distributions. It turns out that the posterior distribution under the reference priors is not proper, and Jeffreys' prior is not a matching prior. It is shown that the proposed first order prior matches the target coverage probabilities in a frequentist sense through simulation study.

Image classification methods applicable multiple satellite imagery

  • Jeong, Jae-Jun;Kim, Kyung-Ok;Lee, Jong-Hun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.81-81
    • /
    • 2002
  • Classification is considered as one of the processes of extracting attributes from satellite imagery and is one of the usual functions in the commercial satellite image processing software. Accuracy of classification plays a key role in deciding the usage of its results. Many tremendous efforts far the higher accuracy have been done in such fields; training area selection, classification algorithm. Our research is one of these effort in different manners. In this research, we conduct classification using multiple satellite image data and evidential approach. We statistically consider the posterior probabilities and certainty in maximum likelihood classification and methodologically Dempster's orthogonal sums. Unfortunately, accuracy for the whole data sets has not assessed yet, but accuracy assessments in training fields and check fields shows accuracy improvement over 10% in overall accuracy and over 0.1 in kappa index.

  • PDF

A NOTE ON PROTECTION OF PRIVACY IN RANDOMIZED RESPONSE DEVICES

  • SAHA AMITAVA
    • Journal of the Korean Statistical Society
    • /
    • 제34권4호
    • /
    • pp.297-309
    • /
    • 2005
  • We consider 'efficiency versus privacy-protection' problem concerned with several well-known randomized response (RR) devices to estimate pro­portion of people bearing a stigmatizing characteristic in a community. The literature of RR on respondent's privacy protection discusses only about response specific jeopardy measures. We propose a measure of jeopardy that is independent of the RR offered by the interviewee and recommend it for using as a technical characteristic of the RR device. For ensuring better cooperation from the interviewees this new measure that depends only on the design parameters of the RR devices may be disclosed to the respondents before producing the RR by implementing the randomization device.

Copula-based common cause failure models with Bayesian inferences

  • Jin, Kyungho;Son, Kibeom;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.357-367
    • /
    • 2021
  • In general, common cause failures (CCFs) have been modeled with the assumption that components within the same group are symmetric. This assumption reduces the number of parameters required for the CCF probability estimation and allows us to use a parametric model, such as the alpha factor model. Although there are various asymmetric conditions in nuclear power plants (NPPs) to be addressed, the traditional CCF models are limited to symmetric conditions. Therefore, this paper proposes the copulabased CCF model to deal with asymmetric as well as symmetric CCFs. Once a joint distribution between the components is constructed using copulas, the proposed model is able to provide the probability of common cause basic events (CCBEs) by formulating a system of equations without symmetry assumptions. In addition, Bayesian inferences for the parameters of the marginal and copula distributions are introduced and Markov Chain Monte Carlo (MCMC) algorithms are employed to sample from the posterior distribution. Three example cases using simulated data, including asymmetry conditions in total failure probabilities and/or dependencies, are illustrated. Consequently, the copula-based CCF model provides appropriate estimates of CCFs for asymmetric conditions. This paper also discusses the limitations and notes on the proposed method.

베이지안 기반의 근전도 발화 측정을 이용한 낙상의 예측 (Bayesian Onset Measure of sEMG for Fall Prediction)

  • 박성식;김기훈
    • 로봇학회논문지
    • /
    • 제19권2호
    • /
    • pp.213-220
    • /
    • 2024
  • Fall detection and prevention technologies play a pivotal role in ensuring the well-being of individuals, particularly those living independently, where falls can result in severe consequences. This paper addresses the challenge of accurate and quick fall detection by proposing a Bayesian probability-based measure applied to surface electromyography (sEMG) signals. The proposed algorithm based on a Bayesian filter that divides the sEMG signal into transient and steady states. The ratio of posterior probabilities, considering the inclusion or exclusion of the transient state, serves as a scale to gauge the dominance of the transient state in the current signal. Experimental results demonstrate that this approach enhances the accuracy and expedites the detection time compared to existing methods. The study suggests broader applications beyond fall detection, anticipating future research in diverse human-robot interface benefiting from the proposed methodology.