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ABSTRACT
In this paper, a Kalman filter approach for enhancing speech
signals degraded by statistically independent additive

nonstationary noise is developed. The autoregressive hidden
markov model (ARHMM) is used for modeling the statistical
characteristics of  both the clean speech signal and the
nonstationary noise process. In this case, the speech
enhancement comprises a weighted sum of conditional mean
estimators for the composite states of the models for the speech
and noise, where the weights equal to the posterior probabilities
of the composite states, given the noisy speech. The conditional
mean ¢stimators use a smoothing approach based on two
Kalman filters with Markovian switching cocfficients, where
one of the filters propagates in the forward-time direction and
the other one propagates in the backward-time direction with
one frame. The proposed method is tested against the noisy
speech signals degraded by Gaussian colored noise or
nonstationary noise al various input signal-to-noise ratios. An
approximate improvement of 4.7-3.2 dB in SNR is achieved at
input SNR [0 and 15 dB. Also, in a comparison of
conventional [7] and the proposed methods, an improvement of
the about 0.3 dB in SNR is obtained with our proposed method.

1. INTRODUCTION

Specch enhancement attempts to minimize the effects of noise
and to improve the performance in voice communication
systems when their input signals are corrupted by background
neise. Furthermore, when the noisy stgnal is assumed only to
be available, speech enhancement requires explicit knowledge
of the joint statistics of the clean speech signal and the noise
process. There have been numerous studies on speech
enhancement adopling the Wiener filter | 1.2) and Kalman filter
[3-5]. In [1], a time-varying autoregressive (AR) model is
attributed to the specch signal and both the model and the
speech signal are estimated from the given noisy speech signal
using the maximum a posteriori probability (MAP). In [4], the
Kalman filter with AR parameters based on minitnum mean-
square error {(MMSE) estimation approach was proposed in
time domain for filtering speech contaminated by additive
white noise or colored noise. In this approach, the ¢stimation is
iteratively performed, once over the AR medel assuming that
the clean signal is available and then over the clean stgnal using
thc cstimated model. In a comparison of Wiener and Kafman
filtcr mcthods, the best performance was obtained with Katman
filtering |5].

Recently, the speech cnhancement using hidden Markov
model (HMM) is developed by Ephraim [6.7). The speech and
noise was modeled by the AR covariance matrices of the
mixturc HMM associated with the most likely sequence of the
states and the AR covariance matrix of the white noisc model,

respectively. Then, the estimation of the clean speech is
performed by applying time-varying Wiener filter to speech
contaminated by the white noise contaminated speech. [t is
known that the speech quality enhanced by the HMM method is
better than that obtatned from the iterative Wiener filter system
(1].

However, these conventional approaches arc implemented for
cnhancing specch on the assumption that noise is additive
stationary process such as white Gaussian or coltored noise. If
the noise is nonstationary with slowly varying statistics, we can
nol expect pood performance in speech enhancement from
those approaches. Since the Kalman filter can take advantage of
the nonstationary process model and the recursive optimal
estimation for real-time processing , we consider the speech
enhancement using the Kalman filter with AR HMM
represented by time-varving AR filters with its parameters
switched by a Markov chain.

The problem addressed in this paper is a recursive method in
time domain bascd on MMSE to enhance speech when only the
speech contaminated by nonstationary noise is available for
processing. To estimate the statistics of speech and noise, we
use the mixture AR HMM and AR HMM with single mixture
to model the speech and noise [8]. respectively. Like the
conventional HMM, the parameter set of the AR HMM is
estimated by the maximum likelihood approach using the Basm
reestimation and expectation-maximization algorithm from the
given training speech and noise data [9,10]. Given the AR
HMM parameter set of the speech and noise model, speech
enhancement becomes a state cstimation problem with the
Kalman filter in a system with Markovian switching coefficient
in control theory [11-13]. The state estitnation is processed by
the fixed interval smoothing using two Kalman filiers with
forward-backward direction or by Kalman filter with forward
direction.  The switching between the Kalman filters is
governed by a finite-state Markov chain with the transition
probabilitics. This proposed enhancement method consists of
the multiple Kalman filters and the outputs of which are
weighted by a time-varying a pasteriori probability. The
coefficients of each Kalman filter consist of the ARHMM
parameters of speech and noise estimated by training algorithm.
Performance  comparison  between the proposed  and
conventional method accomplished in terms of signal o noise
ratio (SNR) and sound spectrograms. An improvement of the
approximate 4.9 dB in output SNR is achieved at input SNR
with 10 dB and 15 dB.

The rest of the paper is organized as follows. In Section 11,
we formulate the problem and specify the specch and noise
model with the BMM. In Section 111, we describe (he waveform
based enhancement algorithm using a smoothing approach. 1n
Scction 1V, we provide experimental results and congclusions
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are given in Section V.

I1. Speech and Noise Models

a. mixture AR hidden markov model for clean speech

To represent the statistics ol the clean speech signal. we
consider ARHMM with f-states and mixtures of 3/ Gaussian
AR oulput processes at each state. Let v—{p(n), n- /.13,
y(n} = {y((n - ])N + I), . ,__v(m'\-’)} be  the
T, s(n) € :I
of states corresponding 1o y, and A= (A(n), n-{ .. T)
h(n}e{l..... M} . he a sequence of mixture components

corresponding o (s, v). Thus, at frame »n speech conditioned in
A7) mixture on state s{(») is expressed by a linear combination
of its pust values plus an excitation source. as

}.(,) = BI;’{n)|\‘(n)Y(r - l) +eh(nH.\'(n]([)’

(n-NN+1cr2Nn {n

observation

sequence, s={s(n), n=1..., L} . be a sequence

where Bh{nx‘(ﬂ [ h(n)!.\'(n}(])"'"b/:(nH.\-{n)(p)] is the vector of

roo
¥(r-1)= [y(t 1)y - p]] is  the
sequence of the past p observations, and the cxcitation source
e (¢} is Gaussian ii.d. process with zero mean and
n s(n)

AR  coefficients,

2 -
Hn)sin)
The likelihood p( y) of the observation sequence is obtained

varnance o

a3

Py)=ZT pls.h.v)

"Zz na\(n s} © h{n ‘() (y(nNh ) 2)

)s(n) denotcs the transition probability from state

where y(n-1

s(n-1) at fram n-/ to state s(n) at time n, and C“(")]"(”) is the

probability of choosing the mixture /{n) provided that the
process is in state s(n). According to (1), the transformation
trom the excitation sequences

{eh(,.)f_,(,,)(’)' ("-I}NHSISHN} to y has Jacobian I.

Given (h(n). s(n)), the conditionat pdf p{y(m)(r).5(n))
given by

p{y n}lh(n} s(n) ) !
(n- I)N+1IJ—0'( )I-S'(n)

-

. j (y{! }|‘(") ] L3

xp
‘ : h{n]|.${n}

Li=1...L

The parameter set 4, = [a,-,_ iy B‘"l" T s>

andm=1,., M} of the ARHMM for the clean speech is

estimated from training sequences of clcan speech signals. As
with the standard mixturc ARHMM [8], we used the Baum-
Welch algorithm [9] for parameter cstimation.
b. HMM for noise signal

Assume that the noise is additive and statistically irdependent

ot the speech signal, Previous works assumed that noise was
stationary white poise of stationary colored notse. However, the
real nowse, such as computer fan noise and car noise €tc.,
generally has the charactertstics of exhibits nonstationary with
time-varying statistics. To model the nonsiationary noise, we
consider FIMM with A’ states for the noise process. Let v—={»{n),

FES AR l-'(n') = {v((n - I)N + I) ..... v(n:\')} be the
x(n)efl.. K}, be

a seyuence of states corresponding to v, Then the noise W) is
modeled by an AR process with order ¢ conditioned on state &
ils

vty = CopW (e = 1) + v oy(e). (2 -
where C;'(")=[cx{”)(]_) ..... (.‘X(n)(q)] is the vector of AR

[v(r -1)vlr

of past g observations, and cr_%{”) is the variance of the

obscrvation sequence, x- {x(s)h n - f, LT

DN +1<r<nV (4)

cocfficients, V(1 - 1}= —q)]r ts the sequence

innovations proccss of an AR source. The pdf p, (v) of noise
is given by

pa v} = Zes {v.x)

7‘ ~
= I [ fo-t)e(n) P2 ((mx{n)¥{0)) (5)
xn=
where EJ("_I)X(,,} denotes the transition probability trom state
x(n-1) ar time

po)n)

given the sequence x{(xn) of noise states and initial values

V(0) = {v(l = q).... .v(O)} :
p(v(n)lx(n) = i) = 'ﬁ\/ !

t=(n-1)N+1 Z”Ux(n)

instant a-/ to state x{n) at », and
V,,(O}) is the conditional pdf of the output v(x)

The parameter set A, = :a,jC o= K} of the

HMM for the noise is also estimated using the Baum algorithm
tor speech model.

The noise model (4) becomes stationary white noise model of
[6.7] or colored noise model of [4] for K=1 and the standard
stationary white Gaussaian noisc model [4] for K=1 and ¢=0 ,
respectively.

[11. Speech Enhancement using smoothing approach

[n this section, we derive the specch enhancement using the
Kalman filter with a priori knowledge of both speech and noise
statistics from section H. Both speech and noise are represented
by AR models. We assume that only the noisy speech sequence

(n) = : ()(n-NN+1<es m\"} is availablc for speech
enhancement, represented by

Z{n)=pn)+v(n), w=12..T (7

where ¥(n)= i}{:),(n -NN << nN} and

V(H] = {V(f).(!l -

NN <t< m’\'} . Note that (he indexing on nN
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is n-th frame with blocklength V.
Then, the MMSE signal estimator j-(n) of clean speech y{(n),

given Z(n) = {z(u)'--z{ l)} ,

theorem as follows { 14]:

can be written using the Bayes

n}.z(n - I)z(l)] .
n}p(y(n)ll(n)) (8)

|Z(n)) in (8) is the conditional pdf of thc clean

The p{y(n)

speech signal y(n) given the noisy signal Z(n) and can be

derived similarly to [7]. Then, p( y(n)IZ (n)) can be expressed
Hotofz)= = ot Sl 2) o

where p(f(n)ll(n)) is the conditional probability of the
composite state )?(n) of the noisy signal at time n given the

noisy signals, and p(y(n)‘z

the clean signal at time r given the noisy signal and its
composite state at time #. Combining (8} and (9) vields upon
interchanging the order of summation

§(n) = ;%’)y‘;(n)(n)p(f(n)lz(n)) (10)

where

File) = 2 vlelelytrfe(e) o)
= E[y ) 2(n )?(n)]

which can be computed by using a vector Kalman filtering
algorithm. Since an estimate of the vector is produced at each
time instant n, we call a direct implementation of (11) the
vector Kalman filter.
However, using the fact that is a Gauss-Markev process we
need only the conditioning of being in the composite state at
time # instead of its entire part history [15.16].

Therefore. j’;(")(t). (n-1)N +1s7<n¥ . can be obtained

(n

recursively by a smoother using two Kalman filters with
forward and backward direction or conventional Kalman filter
conditioned on the composite state. To develop a speech
enhancement algorithm based on Kalman filtering and the
assumption of nonstationary noise. we begin with the mixture
HMM with AR source model in (1) and the observation model
in (7). and reformulate ther into a canonical statc space form
wilh Markov switch sequences (s(n), A(n), x(n)) at n-th frame

(15( (n h(n ) )+ Ge(s(n) (n). x(n)) (12)
z(r )= HIT(0) (13)
[y nN —r

where ¥ (¢ [ (l) l with ¥(r AN -1

()]

-p+l) ] and ¥(¢) [ v(nN —t). . v(nN -1~ q + l)]T

W{s{n). W), +(}) = r( i) q,v(z(,,))

n),,?(n}) is the conditional pdf of

d))_.(s(n).h(n)) =l8’;§"n-;(")j| (x(n)) [ "'(" ]

&(s{m), ), x(n)) = e(-‘(")f'{")]} ._[6, o
(s{7) ). x(m) [ W) | € [0 Gv],

=[n}" ffv"],c)_. = 11,7 =[10..0] G, = #," =[10...0].

We assume that e{s(n).A(n)) and wix(n)) are uncorrelalied so

that
( n) h n ) E[ h(n) })E“()]

2
o, 0
’ h[n]l.\{n}
0 a,’
Y rfed

Cq. (12) and (13) bears the form of a Jinear system with a set of
AR cocfficients associated with Markov states driven by a
white Gaussian noise process with variances following Markov
states. Also, this stale-space mode) is the model of so-called the
noise free or perfect measurcments problem in the estumation
literature [18].

Since the composite  state  sequence )?(n) is

{s(n). h(n).x{n)} . the estimate }%(l) is obtained by

f{l)= kél ’}I-—‘:i E v, s, k( )
~p(s(n = j,h{n)= m, x(n) = kll(n}) (14)

This estimator comprises a weighted sum of conditional mean
estimator using a Kalman filter for the compaosite states of the
signal and noise, where the weights are the probabilities of
these states given the noisy signal. If the state sequences of the
speech and noisc for a given noisy speech are known, the most
appropriate filter from the predesigned set of filters can be
applied to the noisy speech and optimal estimation of clean
speech signal can be performed. There are Lx M x K

possible state sequences.
Therefore, the estimate of the state vector }—’(1) becomes a
ym|_},lc (‘) 5

where the weights are a priori probabilities of the L x M x K
Therefore, the

weighted sum of the individual Kalman estimators

composite  states. problem of speech

enhancement in {14} ts divided into the estimation of }_”"1.1-” (l)
and computation of p{s{n) = j. h(n)=m.x(n)= klZ(n))
A. The estimation of i::"l i)

Each sample estimate of E"ll-’!(r) ts obtained by using

forward-backward Kalman filtering to lurther improve state
smoothing. Then, the simoothed estimate and covariance can be
expressed as

1) 012,06 74,4000
() ] o
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Poja(tIN) = {( Prhflj,k(tlt))-l +(P’2]f"‘(tlt ’ 1))_1} "

This form of the fixed-interval smoother is referred to as the
two-filter form because the smoothed estimate Enl ik (t|N) is
obtained as the combinalion of the forward time filtered

estimate Yf k( | ) and the estimale Y ). k(t]r + l) generated

using a backward~t|me filter.
-Forward Kalman filtering
VL 0= 0Um ] -1
+Kf k(:){z(:) i @(Jmk)yf L |)} (17}
|}k(‘) P{j.m.k} ,,,|,k(" N’ (j.m, k)
+ GO m k)G,
K;:”(r) » ()H[H M’ ()H} |

SIORE N ORESS

ol .k

)HM’ y (7).
- Backward Kalman filtering
}7’:1’”k (de)= @), m. k)?qﬁj.f (r+ e+ Krl:nl;'.k(‘)

.{z(t)- H o j,m,k)?:“ (r+ e+ |)} (18)
ML, (=)= 2Um)el ()0 (j.m.k)

+GO(j mk)G",
N -1

Kl (=MD (e |)H[u’ Mo e+ I)H}
»'-,I )= M~h e+ 1)- K:’:U.A‘ (’)Hqu,.A (e +1)

where Q(s(n) = j.h{n) = m} = 0'3,|}-l

-l
of e(s{n)=j, h(n)-m). Since the [HT'M’l 1I(t}'h'] and

is the covariance matrix

-1
[HrMiu . (I)H] have the scalar valuc, it excludes the need

of inverse matrix procedure,
b. The compwtation of p(s{n) =4, h(n) =

factor p(s(n) =

m.x(n} = klZ(n))

1. h{n) = m..r(n) =

‘Z(n)bccomes using  Z{n)= {z(n.Z(n-—l)} and Bayes

The weighting

rule: p(s(n] = j. h(n) = m.x{n) = /;’Z )
. p(z ‘.\'(n) iz h( )= x )=k.Z(n—
p(z(n)rz
p{s(n) = h(n) = m,x(n) = klZ{n - I)) - (19)

The first term p{z(n)ls(n) = j. h(n)=mx(n)=k. Z(n- [}) is

the conditional probability density of the observation z(x). if

the past observations Z{n-1) and the particular state sequence

{s(n)=f. A(ny=m, x(n)=k} are given. This can be approximated
to a Gaussian density, where the mean and covariance can be
calculated by vsing the Kalman filter matched 10 the sequence

s(n), h(n), and \’(n} i.c..
p{2n)lstn) = J. h(n ——m,x(n)= k.Z{n - 1))
= J. h{n) = m.x(n) = k)
m.x(n) = k)
= f\’{ﬂq_m(} HEy 40 )u"] (20)

where M[...] denotes a normal distribution.
Since the (s(n)=j, A{n)-m) and x(n}=k are mutually
independent, we can recast the second term in (19) as

)= )= m )=zt 1) = )
Hn)= m{Z(n - 1)) o{x(n)= |z(=- )} @D)

The firsi term in (21) is the predicted probability that will be
generated by the Markov process,

p{.\(n) = j. h(n)= le(n - I}) = éfé. As(n) =1,
h{n) = m|:(n ~=ihln-1)=nz(n- l))
Alslr=1)=imn-1)=nfz(a-1)). @2

where we can rewrite the first term us
p{s(7) = . hm) = mls{n — 1) = . bfm ~ 1) = . 2 - )
= pf hln) = mfs{n} = j.s(n = 1) = i b = 1) = . Z{n - 1))
: p(x{n) = _jls(n —)=ihln-t)=n2Z(n- I)) ) (23)

Since the A(n} and s(n) are indcpendent of Z(n-7), and the
probability law for the Markovian chain s(t) is completely
specificd by the transition probabilities, the first and second
term in (23) is rewritten respectively as

p{ h{n) = m's(n) =js(n—1)=ihln-)=n2z(n- I))

=c.li'" (24)
and
p(s(n) . j;s(n ~}y=ihln—1)=nZ(n- l))

= ) = 4| stn-1) = )=a;  (25)

Substituting {24) and (25) into (22) yields

LM

p{.r(n) = _;',h(n) = le(n - I)) = ZI ;IC"’!JG”

. p{.c(n 1) =1 h(n - I) = an(n - I}) (26)

Simtlarly as in (24)-(26), the second term in (2 1} is writien as
K -
p{x(n) = K| 2(n - 1)) = Séiyp{x(n-1)= {2(n - ) oan
=1 '

Thercefore, substituting (25} and (26), (21) ts rewritten as

p{y(n) = _;’_lw(n) = m.x(n) = kfz(n - I)) = i Q_" {a*,c

o= =) ml_y
Ly, p(.s'(n - I} =1, h(n - I) = n._t(h' - I') e k|Z(n - l)) {28)
Since the denominator term of (19} is independent of f and m. it
becomes a  scale  factor.  Therefore, weighting  factor

p{.s’(n) = j.h{n) = m.x{n) = k|2‘(n)) can be  caleutated
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recursively using the previous weighting factor as

p(s(n) = jh(n) = m,x(n) = klZ(n))
=0, Nm[;_k é g gaucmliay
r=ln=1{=1
Asip 1) =i in =1y =n.x{n- 1) = |z{n - 1)) 29
where D, is a scale factor determined at time ¢ and guaraniees
that the sum of atl the weighting factors is equal to one;

LM
§ é b3 p(s(n) = j.h(n}= m.x(n) = klZ(n)) =1. (30
k=1 j=1m=1
Finally, item needed in the computation of (29) is the initial
probability of falling to each state of speech and notse mode! at
time zero. However, in our experiments it was found that the
recursive method is relatively insensitive to the choice of initiat
probabilities of state.

Then, the enhanced speech signal y(¢} is equal w the first

component of the estimated ¥ (¢} as

#(t)=[10..00. 07 (1) 31
P

or #ey= 07:0%0_4_0' r(r +p-1¥).

IV. EXPERIMENTAL RESULTS

The proposed enhancement approach was examined in
enhancing speech signals degraded by statistically independent
additive stationary Gaussian colored noise and nonstationary
noise at the input signal-to-noise ratio {(SNR) with 0, 5, 10, 15,
and 20 dB. The input SNR is defined as the ratio of the average
power of the signal to the average power of the noise.

Training for mixture AR HMM of clean speech was
performed using 8 min of conventional speech from 8 speakers,
e.p., 4 males and 4 females. The speech is sampled at 12kHz
and observation vectors are formed by applying a Hamming
window of 256 samples without overlap. The order of each AR
model is 12, which is a commeonly used value in lmnear
predictive analysis of spcech signals. In enhancement test,
neither the speakers nor the speech material used for testing
were in the training set. The test data consisted of three
sentences originally spoken by a male and a female. Then, the
speech sequence for enhancement recorded in a manner similar
to that of the training.

First, we examined the performance of the proposcd method
under colored noisc. For a colored noise, we used the car noise
sequences. The model for the colored noise process was
estimated directly from the noisy speech, using an initial
interval in which speech was not present. Then, the model is
assumed 10 be one-statc AR HMM with 8-th order. Table i
shows the performance of proposed method with various states
number, mixture components for cach state, and input SNRs
under the colored noise with single state. The best enhancement
results were obtained using the eight-state six-mixture model.
Table 2 show the performance comparisons between the
proposed method and the conventional method based HMM
using the Weiner filter for the eight-state six mixture model at
various input SNR values. An approximate improvement of 0.3
dB in output SNR is achieved at SNR [0 and (5 dB.
compared to the speech enbancement method hased on the

HMM with Weiner filter. Although the output_SNR is slightly
improved by the proposed method, we can not distinguish the
diffcrence from two methods by informal listening test.

Sccond, we e¢xamined the performance of the proposed
method under nonstationary noise. The nonstationary noise for
testing and training was artifically generated by the randomly
switching of two AR model with 8-th order. The two-state AR
1IMM with 8-th order trained 1o model the noise process from
the generated noise signal. Table 3 shows the performance of
the proposed method with the additive nonstationary noise at
input signal-to-noise ratio (SNR}) values with 0, 5, 10, 15, and
20 dB. The proposed method yields good results, too. However,
as the conventional method [7], the proposed speech
cnhancement method was also found less effective at the low
input SNR with 5 dB, although the output SNR is 12.2 dB.

In this experiment, we assume correct knowiedge about the
statistics of excitation source and noise variance. In general,
however, since the recording conditions during (training and
testing may be different, the variances of excitation source in
speech model and noise source are unknown or perfectly
unknown. When noisy speech signal was degraded by noise
signal with unknown variance, the proposed method had poor
results and even diverge when the input has low SNR. As the
input SNR increascs, the output_SNR of the proposed method
with no knowledge of the noise statistics was improved and the
adverse phenomena mentioned above were significantly
reduced. Therefore, when the statistics of noise model structure
are known, the proposed method would produce the same good
results on colored noise or nonstationary noise.

V. CONCLUSION

We proposed a new approach in time domain for enhancing
speech signals degraded by statistically independent additive
stationary or nonstationary colored Gaussian noise. A speech
enhancement is developed by MMSE estimation based on the
estimated statistics of the both speech and noise process from
long training sequence. We used a HMM with mixtures of
Gaussian AR output probability distributions and a HMM with
single mixture to model the speech and noise, respectively.
The mixture models are equivalent to a large HMM with simple
states, together with additional constrainis on the possible
transitions between states. The parameter set of the ARHMM
for the speech and noise is estimated by the maximum
likelihood approach using the Baum reestimation algorithm
from the given training speech and noise data. When the noisy
speech signal is assumed only available, then the MMSE
estimation for speech enhancement comprises a weighted sum
of conditional mean estimators for the composite states of the
models for the speech and noise, where the weights egual the
posterior probabilities of the composite states given the noisy
speech. The conditional mean cstimators use a smoothing
approach based on two Kalman filters with Markovian
swilching coefficients, where one of the filters propagates in the
forward-time direction and the other one propagates in the
backward-time direction in one frame, This cnhancement
afgorithm using the modified Kalman fillering algorithm is
casier (o implement than the IMM based on Weiner filter since
it is a noniterative estimator. This approach docs not require the
transformation of speech in the enhancement procedure like
conventional 1IMM with Weiner filter. In our experimental test,
we obtain the performance about 14.8-15.3 and 19.0-19.5 dI3 at
input SNR 10 and 15 dB under nonstationary or stationary
noise, respectively.
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Tabel L. Output_SNRs for diffcrent number of state/mixture
under various input SNRs.

Slate/mixture inpfjt StIRs (4B)
0 3 10 15
4/4 7.9 1.3 14.8 18.9
8/ 4 83 I1.8 151 19.1
R/6 8.8 12,2 15.5 19.3
12/4 8.5 12.2 15.4 19.2
12/6 8.8 12.1 15.5 19.4

Tabel 2. Comparisions of output_ SNRs  between the
conventional HMM and proposed method with state 8/4 under
various input SNRs.

Mecthods
Input HMM with Weiner | proposed method
SNRs (dB} filter
0 8.5 8.8
5 18 12.2
10 15.2 15.4
15 189 19.2

Table 3. Qutput_SNRs of the proposed method under
nonstationary noise

Naoise Input SNRs

model 0 5 10 15 20
two-statc 8.7 12.2 15.1 19.5 222
HMM

—230-




