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Abstract

In this paper, we introduce the noninformative priors such as the matching priors
and the reference priors for the common scale parameter in the Pareto distributions.
It turns out that the posterior distribution under the reference priors is not proper,
and Jeffreys’ prior is not a matching prior. It is shown that the proposed first order
prior matches the target coverage probabilities in a frequentist sense through simulation
study.
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1. Introduction

The Pareto distribution is a widely used statistical model for an extensive variety of appli-
cations such as studies of income, property values, insurance risk, stock prices fluctuations,
migration, size of cities and firms, word frequencies, occurrences of natural resources, busi-
ness failures, service time in queuing systems, error clustering in communications circuits
and lifetime data, etc (Arnold and Press, 1983; Fernandez, 2008). In a Bayesian point of
view, many authors have studied statistical inferences on Pareto distribution (e.g., Arnold
and Press, 1983, 1989; Geisser, 1984, 1985; Lwin, 1972; Nigm and Hamdy, 1987; Tiwari,
Yang and Zalkikar, 1996; Ko and Kim, 1999; Fernandez, 2008; Kim et al., 2009; Kang,
2010).

Consider X and Y to be independently distributed random variables with the Pareto dis-
tribution P(c, A) with the shape parameter o and the scale parameter A, and the Pareto dis-
tribution P(3, A) with the shape parameter 8 and the scale parameter A, respectively. That
is, the parameter A is the common scale parameter. We focus on developing noninformative
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priors for the common scale parameter in Pareto distributions. If sufficient information from
past experience, expert opinion or previously collected data is avaialble, subjective priors
are ideal. Otherwise noninformative or default priors are to be considered.

The notion of a noninformative prior has attracted much attention in recent years. There
are different notions of noninformative prior. Welch and Peers (1963) introduced a proba-
bility matching prior which matches the posterior and frequentist probabilities of confidence
intervals. Interest in such priors revived with the work of Stein (1985) and Tibshirani (1989).
Among others, we may cite the work of Mukerjee and Dey (1993), DiCiccio and Stern (1994),
Datta and Ghosh (1995a, 1995b, 1996), Mukerjee and Ghosh (1997). Bernardo (1979) ini-
tiated the reference prior approach to maximize the expected KullbackLeibler divergence
of the posterior distribution relative to the prior. Ghosh and Mukerjee (1992), and Berger
and Bernardo (1989, 1992) give a general algorithm to derive a reference prior by splitting
the parameters into several groups according to their order of inferential importance. This
approach is very successful in various practical problems. Quite often reference priors satisfy
the matching criterion described earlier.

The Pareto distribution is reverse J-shaped and positively skewed with a decreasing hazard
rate. Although the family was originally applied to analyze socio-economic and natural
phenomena with long tail, the family has potential for modeling reliability and lifetime data
as well (Arnold and Press, 1983). The Pareto distribution has been used by many authors in
a Bayesian viewpoint (e.g., Arnold and Press, 1983, 1989; Geisser, 1984, 1985; Lwin, 1972;
Nigm and Hamdy, 1987; Tiwari et al., 1996; Ko and Kim, 1999; Fernandez, 2008; Kim et
al., 2009; Kang, 2010). For the common scale parameter, Elfessi and Jin (1996) derived a
class of improved estimators which uniformly dominates the MLE under a class of convex
scale invariant loss functions. However the objective Bayesian inference for the common
scale parameter is not fully considered. Therefore there is a necessity for developing the
noninformative prior to the objective Bayesian inference of the common scale parameter.

The outline of the remaining sections is as follows. In Section 2, we develop first order and
second order probability matching priors for the common scale parameter. The reference
priors for the common scale parameter are also derived. However the posterior distribu-
tion under the reference is not proper. It turns out that Jeffreys’ prior is not a first order
matching prior. We provide the propriety of the posterior distribution for the general prior
including the matching and Jeffreys’ priors. In Section 4, we explore the frequentist coverage
probabilities under the proposed prior.

2. The noninformative priors

Let X and Y be random variables from two independent Pareto distributions with the
common scale parameter A\, and shape parameters o and (3, respectively. The Pareto prob-
ability density functions of X and Y are given by

f(@la,\) = aX(1 4 Az)~ @) 2> 0,a > 0,1 >0, (2.1)
and

FWlB,A) = BA1 + Ay)~ B+ 4y > 0,8 > 0,1 > 0. (2.2)
respectively. Let x;,i = 1,--- ;n denote observations from the Pareto distribution P(c, \),

and y;,4 = 1,--- ,m denote observations from the Pareto distribution P(3, A). Then corre-
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sponding likelihood function of A\, « and /3 is given by

LA o, Bx,y) = a” BTN T+ Awa) =D TT(1+ Aga) =40, (2.3)
=1

i=1

where x = (1, - ,2,), ¥y = (Y1, - ,Ym). The common scale parameter \ is parameter of
interest. Now we develop the noninformative priors for A.

2.1. The reference priors

Reference priors introduced by Bernardo (1979), and extended further by Berger and
Bernardo (1992) have become very popular over the years for the development of noninfor-
mative priors. We derive the reference priors for different groups of ordering of (X, «, 8) by
the algorithm of Berger and Bernardo (1992).

From the likelihood (2.3), the Fisher information matrix is given by

1 4+ m _n __ _m _
2 a+2 ﬁ+2 Ala+1)  X(B+1)

I\ o, 8) = D (2.4)

Firstly, we derived the two group reference prior for the parameter grouping {, (o, 3)}. The
compact subsets were taken to be Cartesian products of sets of the form

AE [al,bl],a S [ag,bg},ﬁ S [a3,b3]. (25)

In the limit a;,7 = 1,2, 3 will tend to 0, and b;,7 = 1, 2, 3, will tend to co. For the derivation
of the reference prior, from the Fisher information (2.4),

1 nao mp _ nm.
hl)\2((a+1)2(a+2)+(5—1—1)2(5—1—2)) andhz—a262.

Here, and below, a subscripted  denotes a function that is constant and does not depend
on any parameters but any () may depend on the ranges of the parameters.
Step 1. Note that

bz pba bs  pba 1/2 . b b
[ o [ ) oot =t () ()

It follows that

my(a, BIA) = Q1T AT,

where Q1 = log (b2/az) log (bs/as).
Step 2. Now

by rbe _ no mp
Bogmla. sy = [ [“arta 5 0s |5 (i RG]

= Q2+10g)\ 2,
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It follows that

7t (\) o exp[E{log h1 e, B}/2] = exp{Q2/2} X"

Therefore the reference prior is

(A a,B) = lim (e, BT (V)

x A tatpTh 2.6
1—o0 mh(aw, Bol o)t (No) >

where Ao, g and Sy are an inner point of the interval (0, c0).
Nextly, we derived the one-at-a-time reference prior for the parameter grouping {\, a, 5}
For the derivation of the reference prior, from the Fisher information (2.4),

n m
)7h2a23ndh362.

1 (na(ﬂ +1)2(B+2) +mB(a+1)%(a+2)

= A2 (a+ 1) (a+2)(B+1)%(8+2)

Step 1. Note that
b3 bs 1/2 b
- / (m) df = m* log (3> .
Lg 8 as 52 as

(BN, a) = Q7' B,

It follows that

where Q1 = log (bs/as3).
Step 2. Now

E'{log ha|\, a} = bs Q7' p 1 log (%) dB = log (%) .

as
It follows that

b2 b
/ exp[E {log ha|A, a}/2)da = n? log (2> .
a a2

2

Hence mh(a, B|1A) = Qy '3t where Q2 = log(by/az) log(bs/as3).
Step 3. Now

Egy{log ha|\}

B bl 1 (na(B+1)2(8+2) +mB(a+1)*(a+2)
= e log{v( @+ D2a+2)(3+ D2 +2) >}dﬂd‘“

3

= Q3 +log A2

So
b1
/ exp|E4 {log h1]61}/2]d\ = exp {%’} log (bl) )

ay
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Thus ©{ (A, o, B) = Q3 ' A" ta™ 371, where Q3 = log(b1/a1)log(ba/az)log(bs/as). The ref-
erence prior is thus

T\, B) cc A a1 L (2.7)
Note that the one-at-a-time reference prior and the two group reference prior are the same.

Remark 2.1. From the Fisher information (2.4), Jeffreys’ prior is given by

Nl

nao mp

—1 _—1p-—1
iAo, B) x AT a8 (1+a)2(2+a) M (1+8)2(2+8)

(2.8)

2.2. The probability matching priors

For a prior 7, let 67~ *(7; X) denote the (1 — a)th percentile of the posterior distribution
of 61, that is,

PTo; <01 (mX)X] =1—a, (2.9)
where @ = (6y,---,0;)T and 6, is the parameter of interest. We want to find priors 7 for
which

Pl6y < 017%(m;X)|0] =1 —a +o(n™"). (2.10)

for some u > 0, as n goes to infinity. Priors 7 satisfying (2.10) are called matching priors.
If w = 1/2, then  is referred to as a first order matching prior, while if uw = 1, 7 is referred
to as a second order matching prior.

In order to find such matching priors , let

61 = X\, 0 =log(a)) —a~! and A5 = log(B\) — 571,

The Jacobian matrix of this transformation is

1 0 0
6(91792393) 1 1 1
LA _ L Lyl g . (2.11)
a8 O N G|
( ) %" L4

Therefore the inverse of the expected Fisher information matrix can be written as

171 0000,00) = (SR 10 (Gt

o\ a, B) O\ a, B)
~1
na mpj 2
o + o) M0 0
= 0 w2 gL (212)
0 o &8r
By (2.12), the Fisher information matrix is
no mp -2
e + o) 0 0
1(01,02,03) = 0 e 0 . (2.13)

0 0 ey
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Thus 6, is orthogonal to #3 and 63 in the sense of Cox and Reid (1987). Following Tib-
shirani (1989), the class of first order probability matching prior is characterized by

no n mp
1+a)22+a) (1+pB)22+5)

T (01,02, 03) [ } A1g(0,03), (2.14)

where g(02,03) > 0 is an arbitrary function differentiable in its argument. We may also note
that the matching prior in the original parametrization (A, «, 3) is given by

1

(1+a)(1+p3) no mp 2
(A . ) o g [ﬂ+aP@+aY+ﬂ+BF@+BJ
x g (log(aX) —a™ ", log(BA) — B71). (2.15)

Notice that the matching priors (2.15) include many different matching priors because of
the arbitrary selection of the function g. And for some functions, there does not seem to
be any improvement in the coverage probabilities with these posteriors. So we consider a
particular first order matching prior where g is a constant in matching priors (2.15). This
prior is given by

Tm(\, @, 8) x

(1+a)(1+5) [ no mp3 r, (2.16)

2B |(+aPC+a) 01822 +5)

3. Implementation of the Bayesian procedure

We investigate the propriety of posteriors for a general class of priors which include Jef-
freys’ prior (2.8) and the matching prior (2.16). We consider the class of priors

no n mp
(I+a)224+a) (1+8)22+p8

7\ a,B) x A la 787 (1 + )b (1 + 6)° [ )} , (3.1)

where @ > 0,b > 0 and ¢ > 0. The following general theorem can be proved.

Theorem 3.1 The posterior distribution of (A, «, 3) under the general prior, (3.1), is proper
ifn—a4+c¢c>0m—a+c>0and a+2c—0b>1.

Proof: Note that the joint posterior for A\, & and 3 given x and y is
(A, o, Blx,y)

x )\n+mflan7a6mfa(1 +a)b(1 +5)b [

no N mp3 }C
(1+a)3?@2+a) (1+5)2(2+5)
X - (1+ Ag;)~ (@D ﬁ(l + Ay;) "D

1 i=1

7

< Amtmelgn-agm=a() 4 g)b(] 4 gy [

no N mp r
1+a)22+a) (1+6)22+0)
X (14 Azy) et D=mB+Y = 2/(X o, BIx,y), (3.2)
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where z; = min{z1,- - ,Z,,y1, - ,Ym}. Then integrating with respect to A in (3.2), we can
get

nao mp

(0, Blx,y) oc a1+ ) (1 + B)° T+ 2@ +a)  (1+72E+5)

1

X —. (3.3)
Hjign Y(no +mB + §)
Now
/ n—agm-—a b b ach
(o, Blx,y) < 1™ 8™ (1 + a)’(1 +
1
X n+m—1 .
Hj:o (na+mpB + j)
< c2an—a+c—1ﬁm—a+c—1(1 + a)—(n—1)+b—3C(1 + 6)—(m—1)+b—30
=7"(a, BIx,y), (3.4)
where ¢; and ¢y are a constant. Thus the posterior (3.4) is proper if n—a+c¢ > 0,m—a+c > 0
and a + 2¢ — b > 1. This completes the proof. O

Theorem 3.2 The posterior distribution of (A, «,3) under the reference prior, (2.7), is
improper.

Proof: Note that the joint posterior for A\, and 5 given x and y is

7A@, Bx,y) oc A"t TT(1 4 ) =D T (14 Ags) P

1=1 =1
> AmtmTlgnTlgmel(] 4 hg) et )mmBED = 7/() o, Blx,y), (3.5)

where zo = max{z1, -, Tm, Y1, - ,Ym ). Then integrating with respect to A in (3.5), we
can get
n+m—1
7 (o, Blx,y) o< a® 1 ] (nat mB o+ )
§=0

> a1 Y na+mB+n+m—1)"" =", Blx,y).  (3.6)
Then integrating with respect to « in (3.6), we can get
7 (Bx,y) o< B HmpB +n+m—1)"™. (3.7)

Thus
/0 (1%, y)dB = oc. (3.8)

This completes the proof. O
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Theorem 3.3 Under the prior (3.1), the marginal posterior density of A is given by

T(AlX,y)
> > n+m—1_n—a gm—a b b no mﬁ ‘
<[ [ e 04 0 | T T TR
s JT+ Aay) =D T + Mys) =PV dadB. (3.9)
=1 =1

Note that the marginal density of A requires three dimensional integration. Therefore we
have the marginal posterior density of A, and compute the marginal moment of A which is
a Bayes estimator of A under the squared error loss function.

4. Numerical studies

We evaluate the frequentist coverage probability by investigating the credible interval of
the marginal posterior density of A under the reference prior given in Section 3 for several
configurations (A, a, 8) and (n,m). That is to say, the frequentist coverage of a (1 — n)th
posterior quantile should be close to 1 — . This is done numerically. Table 4.1 gives nu-
merical values of the frequentist coverage probabilities of 0.05 (0.95) posterior quantiles
for the proposed prior. The computation of these numerical values is based on the follow-
ing algorithm for any fixed (A, «,3) and any prespecified probability value n. Here n is
0.05 (0.95). Let A™(n|X,Y) be the nth posterior quantile of A given X and Y. That is,
FA\™(n)X,Y)|X,Y) =7, where F(-|X,Y) is the marginal posterior distribution of A. Then
the frequentist coverage probability of this one sided credible interval of A is

P()\,a,ﬁ) (777 )‘) = P(/\,a,ﬂ) (0 <A < /\ﬂ—(n‘X7Y)) (41)

The estimated Py q,5)(1; A) when 1 = 0.05(0.95) is shown in Table 4.1. In particular, for
fixed n,m and (X, a, ), we take 10,000 independent random samples of X = (X1, -+, X,,)
and Y = (Y1, ,Y,,) from the Pareto distributions, respectively.

For the cases presented in Table 4.1, we see that the matching prior 7, matches the target
coverage probability much more accurately than Jeffreys’ prior 7; for values of (A, «, 8) and
values of (n,m). Note that Jeffreys’ prior m; does not satisfy a first order matching criterion.
Thus we recommend to use the matching prior 7, in the sense of asymptotic frequentist
coverage property.
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Table 4.1 Frequentist coverage probability of 0.05 (0.95) & posterior quantiles of A

a,p

A

(n,m)

0.5, 0.5

0.5

10,10
10,20
20,20
20,30
30,30

10,10
10,20
20,20
20,30
30,30

10,10
10,20
20,20
20,30
30,30

10,10
10,20
20,20
20,30
30,30

0.5

10,10
10,20
20,20

3.0

0.5, 2.0

0.5

1.5

3.0

1.0, 1.0

0.5

3.0

1.0, 2.0

1.0

3.0

30,30
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5. Concluding remarks

In the Pareto models, we have found the first order matching priors and the reference
priors for the common scale parameter. It turns out that the posterior distribution of the
reference priors is not proper and Jeffreys’ prior is not the first order matching. As illustrated
in our numerical study, the matching prior met very well the target coverage probabilities.
Thus we recommend the use of the matching prior for Bayesian inference of the common
scale parameter in two independent Pareto distributions.
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