• Title/Summary/Keyword: positively quadrant dependent

Search Result 9, Processing Time 0.027 seconds

A functional central limit theorem for positively dependent random vectors

  • Kim, Tae-Sung;Baek, Jong-Il
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.707-714
    • /
    • 1995
  • In this note, we extend the concepts of linearly positive quadrant dependence to the random vectors and prove a functional central limit theorem for positively quadrant dependent sequence of $R^d$-valued or separable Hilbert space valued random elements which satisfy a covariance summability condition. This result is an extension of a functional central limit theorem for weakly associated random vectors of Burton et al. to positive quadrant dependence case.

  • PDF

A Mixture of Multivariate Distributions with Pareto in Reliability Models

  • El-Gohary Awad
    • International Journal of Reliability and Applications
    • /
    • v.7 no.1
    • /
    • pp.55-69
    • /
    • 2006
  • This paper presents a new class of multivariate distributions with Pareto where dependence among the components is characterized by a latent random variable. The new class includes several multivariate and bivariate models of Marshall and Olkin type. It is found the bivariate distribution with Pareto is positively quadrant dependent and its mixture. Some important structural properties of the bivariate distributions with Pareto are discussed. The distribution of minimum in a competing risk Pareto model is derived.

  • PDF

ON STRONG LAWS OF LARGE NUMBERS FOR 2-DIMENSIONAL POSITIVELY DEPENDENT RANDOM VARIABLES

  • Kim, Tae-Sung;Beak, Hoh-Yoo;Seo, Hye-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.709-718
    • /
    • 1998
  • In this paper we obtain strong laws of large numbers for 2-dimensional arrays of random variables which are either pairwise positive quadrant dependent or associated. Our results imply extensions of Etemadi`s strong laws of large numbers for nonnegative random variables to the 2-dimensional case.

  • PDF

A functional central limit theorem for positively dependent random fields

  • Tae Sung Kim;Eun Yang Seok
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.265-272
    • /
    • 1996
  • In this note we prove a functional central limit theorem for linearly positive quadrant dependent(LPQD) random fields, satisfying some assumption on covariances and the moment condition $\sup_{n \in \Zeta^d} E$\mid$S_n$\mid$^{2+\rho} < \infty$ for some $\rho > 0$. We also apply this notion to random measures.

  • PDF

On a functional central limit theorem for the multivariate linear process generated by positively dependent random vectors

  • KIM TAE-SUNG;BAEK JONG IL
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.119-121
    • /
    • 2000
  • A functional central limit theorem is obtained for a stationary multivariate linear process of the form $X_t=\sum\limits_{u=0}^\infty{A}_{u}Z_{t-u}$, where {$Z_t$} is a sequence of strictly stationary m-dimensional linearly positive quadrant dependent random vectors with $E Z_t = 0$ and $E{\parallel}Z_t{\parallel}^2 <{\infty}$ and {$A_u$} is a sequence of coefficient matrices with $\sum\limits_{u=0}^\infty{\parallel}A_u{\parallel}<{\infty}$ and $\sum\limits_{u=0}^\infty{A}_u{\neq}0_{m{\times}m}$. AMS 2000 subject classifications : 60F17, 60G10.

  • PDF

THE INVARIANCE PRINCIPLE FOR LINEARLY POSITIVE QUADRANT DEPENDENT SEQUENCES

  • Kim, Tae-Sung;Han, Kwang-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.951-959
    • /
    • 1994
  • A sequence ${X_j : j \geq 1}$ of random variables is said to be pairwise positive quadrant dependent (pairwise PQD) if for any real $r-i,r_j$ and $i \neq j$ $$ P{X_i > r_i,X_j > r_j} \geq P{X_i > r_i}P{X_j > r_j} $$ (see [8]) and a sequence ${X_j : j \geq 1}$ of random variables is said to be associated if for any finite collection ${X_{i(1)},...,X_{j(n)}}$ and any real coordinatewise nondecreasing functions f,g on $R^n$ $$ Cov(f(X_{i(1)},...,X_{j(n)}),g(X_{j(1)},...,X_{j(n)})) \geq 0, $$ whenever the covariance is defined (see [6]). Instead of association Cox and Grimmett's [4] original central limit theorem requires only that positively linear combination of random variables are PQD (cf. Theorem $A^*$).

  • PDF

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR POSITIVELY DEPENDENT SEQUENCES

  • KIM, TAE-SUNG;KIM, HYUN-CHULL
    • Honam Mathematical Journal
    • /
    • v.16 no.1
    • /
    • pp.111-117
    • /
    • 1994
  • In this note we prove a functional central. limit theorem for LPQD sequences, statisfying some moment conditions. No stationarity is required. Our results imply an extension of Birkel's functional central limit theorem for associated processt'S to an LPQD sequence and an improvement of Birkel's functional central limit theorem for LPQD sequences.

  • PDF

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR MULTIVARIATE LINEAR PROCESS WITH POSITIVELY DEPENDENT RANDOM VECTORS

  • KO, MI-HWA;KIM, TAE-SUNG;KIM, HYUN-CHULL
    • Honam Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.301-315
    • /
    • 2005
  • Let $\{A_u,\;u=0,\;1,\;2,\;{\cdots}\}$ be a sequence of coefficient matrices such that ${\sum}_{u=0}^{\infty}{\parallel}A_u{\parallel}<{\infty}$ and ${\sum}_{u=0}^{\infty}\;A_u{\neq}O_{m{\times}m}$, where for any $m{\times}m(m{\geq}1)$, matrix $A=(a_{ij})$, ${\parallel}A{\parallel}={\sum}_{i=1}^m{\sum}_{j=1}^m{\mid}a_{ij}{\mid}$ and $O_{m{\times}m}$ denotes the $m{\times}m$ zero matrix. In this paper, a functional central limit theorem is derived for a stationary m-dimensional linear process ${\mathbb{X}}_t$ of the form ${\mathbb{X}_t}={\sum}_{u=0}^{\infty}A_u{\mathbb{Z}_{t-u}}$, where $\{\mathbb{Z}_t,\;t=0,\;{\pm}1,\;{\pm}2,\;{\cdots}\}$ is a stationary sequence of linearly positive quadrant dependent m-dimensional random vectors with $E({\mathbb{Z}_t})={{\mathbb{O}}$ and $E{\parallel}{\mathbb{Z}_t}{\parallel}^2<{\infty}$.

  • PDF