A FUNCTIONAL CENTRAL LIMIT THEOREM FOR MULTIVARIATE LINEAR PROCESS WITH POSITIVELY DEPENDENT RANDOM VECTORS

  • KO, MI-HWA (Statistical Research Center For Complex System Seoul National University) ;
  • KIM, TAE-SUNG (Department of Mathematics WonKwang University) ;
  • KIM, HYUN-CHULL (Division of Computer and Information Science Daebul University)
  • Received : 2005.01.17
  • Published : 2005.06.25

Abstract

Let $\{A_u,\;u=0,\;1,\;2,\;{\cdots}\}$ be a sequence of coefficient matrices such that ${\sum}_{u=0}^{\infty}{\parallel}A_u{\parallel}<{\infty}$ and ${\sum}_{u=0}^{\infty}\;A_u{\neq}O_{m{\times}m}$, where for any $m{\times}m(m{\geq}1)$, matrix $A=(a_{ij})$, ${\parallel}A{\parallel}={\sum}_{i=1}^m{\sum}_{j=1}^m{\mid}a_{ij}{\mid}$ and $O_{m{\times}m}$ denotes the $m{\times}m$ zero matrix. In this paper, a functional central limit theorem is derived for a stationary m-dimensional linear process ${\mathbb{X}}_t$ of the form ${\mathbb{X}_t}={\sum}_{u=0}^{\infty}A_u{\mathbb{Z}_{t-u}}$, where $\{\mathbb{Z}_t,\;t=0,\;{\pm}1,\;{\pm}2,\;{\cdots}\}$ is a stationary sequence of linearly positive quadrant dependent m-dimensional random vectors with $E({\mathbb{Z}_t})={{\mathbb{O}}$ and $E{\parallel}{\mathbb{Z}_t}{\parallel}^2<{\infty}$.

Keywords

References

  1. Convergence of Probability Measures Billingsley, P.
  2. J. Multi. Anal. v.44 A functional central limit theorem for positively dependent random variables Birkel, P.
  3. Time Series: Theory and Methods;Series in Statistics Brockwell, P.J.;Davis, R.A.
  4. Stoc. Proc. and Appl. v.23 An invariance principle for weakly associated random vectors Burton, R.M.;Darbrowski, A.R.;Dehling, H.
  5. Stat. and Probab. Letts. v.51 A central limit theorem for the stationary linear processes generated by linearly positive quadrant dependent processes Kim, T.S.;Baek, J.I.
  6. Ann. Math. Statist. v.37 Some concepts of dependence Lehmann, E.L.
  7. Comm. Math. Dhys. v.79 Normal fluctuations and the FKG inequclities Newman, C.M.
  8. Inequalities in Statistics and Probab. IMS Lecture Notes Monograph Series v.5 Asymptotic independence and limit theorems for positively and negatively dependent random variables Newman, C.M.
  9. Almost Sure Convergence Stout, W.