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Abstract. This paper presents a new class of multivariate distributions
with Pareto where dependence among the components is characterized
by a latent random variable. The new class includes several multivari-
ate and bivariate models of Marshall and Olkin type. It is found the
bivariate distribution with Pareto is positively quadrant dependent and
its mixture. Some important structural properties of the bivariate dis-
tributions with Pareto are discussed. The distribution of minimum in a
competing risk Pareto model is derived.
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1. INTRODUCTION

Sometimes failure rate can occur for more than one reason and the mixture of
multivariate distribution is a nice tool for modeling such situation. For example,
assume that T} and T» are the times at that two specific components of an electronic
system fail. If these components will fail at the same time with probability p,
then their common failure time may be distributed according to some univariate
distributions. On the other hand these components will fail at different times with
probability 1 — p, and in this case their failure times should be distributed according
to some bivariate distributions. '

The reliability analysis and electronics widely use the univariate distributions
such as exponential, Pareto and linear failure rate, see for example Sarhan and
El-Gohary (2001) and El-Gohary (2005).
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Mardia (1962) introduced two families of bivariate Pareto distributions with the
property that both of marginal distributions are univariate Pareto form. Also he
discussed the estimation of parameters in the bivariate distributions with Pareto.
Arnold (1993) studied two classes of k-dimensional distributions with generalized
Pareto conditionals. Such study introduced the general functional equations char-
acterizing distributions with generalized Pareto conditional and identify and char-
acterize two subclasses of such distributions. Gupta (2001) studied a class of bi-
variate distributions with Pareto conditional from a reliability point of view. In this
study, failure rate and mean residual life function of marginal distributions and their
monotonic properties are investigated.

Several basic multivariate parametric families of distributions such as multivari-
ate exponential, linear failure rate distributions, and shock models that give rise to
them are considered by Barlow and Proschan (1981), El-Gohary (2004). Earlier,
Marshall and Olkin (1967a) considered a shock model to derive a bivariate exponen-
tial distribution. Generalization of bivariate exponential distribution is proposed by
Marshall and Olkin (1967b).

The present paper is organized as follows. Section two deals with the multivariate
mixture of Pareto distributions with a Pareto latent random variable. Section three
introduces the bivariate Pareto distributions. The joint probability density function
of a new class of bivariate Pareto distributions is derived. The bivariate dependence
of this class is investigated. Section four deals with the mixture of bivariate Pareto
distributions and its bivariate dependence. Section five presents competing risk
Pareto models. Finally, some properties of mixture of bivariate Pareto distributions
are presented.

2. THE PARETO MODEL

This section concerns with the mixture of the second kind pareto distributions
and we derive a multivariate distribution where dependence among the components
is characterized by a latent Pareto random variable independently distributed of the
individual component. Also we develop a bivariate pareto distribution with a latent
random variable independently distributed of the individual components.

We consider an n-component system where the lifetime of 1 — th component,
namely X; has a mixture of pareto distributions, ¢ =1,2,...,n. That is

X; ~ E_l;:l ai; Xij, Xij ~ Pla,035), 5 = 1,2,...,k (2.1)

where the notation P(a,f;;) means a random variable, say X;;, having a pareto
distribution with the parameters (a, 6;;) and its density function is given as

0. ~ -
Ix,;(z) = (a -:—Ja:)FX“ (z),z>0,a>0,0; >0, (2.2)
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where Fl, ;(z) is the survival function of the random variable X;; which is given by

_ a 0
Fx,(z) = (aﬂ) ,£>0,a>0,6;>0, (2.3)
and a; = (@i1,--.,a;) is the vector of mixing probabilities corresponding to i — th
component. That is
k
> aij =1, andai; >0, Vi,j (2.4)
Jj=1

Next, we introduce a pareto random variable Z, with parameters a and 6 which is
independent from Xj;; for all ¢,j. The random variable Z will be used as a latent
random variable to introduce dependence among X/s. The density function of this
latent variable is given by

0 _
f2(z) = ((H_x)FZ(z), 2>0,a>0,6>0. (2.5)
where Fz(z) is the survival function of Z which given by
_ a [}
Fz(z)=(a+m),z20,a>0,0>0. (2.6)

Using the assumption of our model the latent random variable Z is also indepen-
dent of X; for all (i =1,2,...,n), we define the vector of multivariate distribution
S = (51,85,...,5,) where S; = min(X;, Z) for all (i = 1,2,...,n) and obviously
they are dependent as they commonly share the influence of the latent random
variable Z.

In what follows we introduce the joint of a multivariate survival function of the

random variables 57, S9,...,S5y.
Corollary 2.1 The joint survival function of S1,S5,,...,S, is given by

n k

F(s1,89,...,8p) = H {zaij(azsi)Oij (afsc)e/n} , (2.7)

i=1 {j=1

where 5o = max(s1, s2,...,8,) > 0.
Proof. The survival function of S, 5s,...,S, is defined by
F(s1,...,8p) = P(S1 > s1,...,8, > sp)
Then using the definitions of S; = min(X;, Z) we get
F(s1,...,85) = P(X1 > 81)P(X2 > 52) ... P(X,, > sp)P(Z > s0)

n k B
- (753 0> e()" (28)

i=1j=1
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But X; is a mixture of X;; ~ P(a,0;;) hence one can write the above relation as
given by (2.7), which completes the proof.

Obviously, the presence of the latent variable Z makes it is very difficult to
calculate the multivariate density function of S1, S5, ..., S, as we have to take mixed
derivatives over all possible partitions of the sample space.

3. BIVARIATE PARETO DISTRIBUTIONS

This section is concerned with the bivariate Pareto distributions. The bivariate
Pareto density function (pdf) and its marginates will be derived. Also the bivariate
dependence and many other important properties of the bivariate Pareto will be
discussed in details.

3.1 Joint pdf of Pareto distributions

The following theorem provides an approach of obtaining the joint bivariate
density when the component of the random variables can be equal with positive
probability. This theorem presents the bivariate Pareto density function of the
bivariate Pareto random variable (X7, X3).

Theorem 3.1 If the bivariate survival function F’X1 X, (21, 22) of the bivariate ran-
dom variable (X1, X3) with Pareto takes the following form:

_ a 01 a 02 a (/]
Fx, x,(z1,22) = <a+x1) _ (a+x2> (a+z) , where z = max(z1,z3) (3.1)

then the joint bivariate density function of (X, X3) is given by
filz,22), 71> 12

fx . x:(z1,32) = ¢ folz1,22), 1 <22 (3.2)
fo(z1,22), =1 =122

where . -
_02(0: +0) ( a ) 1 < a 2
hiley,@2) = a? a+ z a+z2)
_ 01(62+6) ( a )91+1 ( a )02+6+1
fa(@1,29) = a? a+z a+ 2o
2] a 0+6014+62+1
folanan) = 7 (=) m=m=c (33)

Proof. The proof of this theorem is based on obtaining the forms of fi(z1,x2) and
f2(z1, z2) by differentiating the joint survival Fx, x,(z1,z2) that given by (3.1) with
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respect to both z; and z2 twice times. In the other hand the function fo(z,z) will
be obtained using the identity

oo LpIT1 00 OO 1)
/0 /0 f1(@1, 52)dzadz) + /0 / f2(@1, 2)dwadzy + /0 folz,z)dz =1, (3.4)

o0 rIy © 040 0+61+62+1
/0 /0 f1($1,:62)d£82d$1=1—/0 ( 1)( a ) dzy, (3.5)

a a+z
and 0o oo © 0 a 9+91+02+1d 36
/0 /x1 fa(z1, z2)dzodzy =/O (;) (a+$1> 1, (3.6)
Substituting from (3.5) and (3.6) into (3.4) we get
o0 4 a 0+61+02+1
/0 {folz,2) = (%) (a ~ x) }dz =0, (3.7)

Therefore, since this integral satisfies for all positive value of x, then the function
fo(z, ) is given by

folz,z) = (g) (a _(:_ x)0+01+02+1 ,z >0 (3.8)

which completes the proof.
Note that joint density fx, x,(z1,2) of the bivariate random variable (X7, X5)
is constant over intersections of lines z; + a = const. and x5 + a = const.

Lemma 3.1 The marginal density function of the random variable X;, (i = 1,2) is
given by:

0+ 6; (8:+6+1)
a Z) (a —zxz)

Ix;(x:) = (

which has a Pareto form.

=12 (3.9)

The proof of this lemma can be done by integrating the joint pdf of (X, X3) with
respect to z;.

From (3.9) we find that, the marginal probability density functions of X; are
also Pareto distributed with parameters (6; +6), i = 1,2. Also we can easily verified
that the random variable X; has decreasing failure rate which is given by

0+ 0;

(1) =
ri(t) a+t

,t>0,a,6,0; >0,1=1,2

In a great many reliability situations, the random variables of interest are non-
independent, but rather are associated for example structures in which components
share the load, so the failure of some components results in increased load on every
of the remaining components.
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Theorem 3.2 The two random variables (X1, X») which are defined by the survival
function (3.1) are associate.

Proof. To prove the two random variables X; and X, are associate we must prove

the
2

P(X1 > 71,X2 > 22) > [[ P(Xi > z3) (3.10)
=1
and )
P(X; < 21, X2 < 39) > [[ P(X: < m0). (3.11)
=1

Using the definitions of X; and X, we have

2
(aiz)agP(Xi > l'z) = (a -fxl)a(afxz)ep(xl >x,X0 > .’1:2); z = ma.x(;c,y)
(3.12)

Now, using the definition of z we can easily verify that the inequality (3.10) is
satisfies for all z1, x5 > 0.

Using a similar manner we can easily prove the inequality (3.11) is also satisfies
for all z1,z2 > 0, that is (X7, X5) are associate random variables which completes
the proof.

Corollary 3.2 With the nonlinear transformation X; = a(e”* — 1), X3 = a(eV? —
1) we conclude from (3.2) that the joint density of bivariate (X1, X5) is bivariate
exponentially density function of Marshall and Olkin type with parameters (6, 65).

Proof. Calculate the Jacobian J(z1,z2) of the transformation
z1 = a(e™ — 1), T2 = a(e*? — 1) (3.13)
and substitute into the density equation

fxy(z,y) = |J| fu,v, (u1, u2)

using (3.2) and (3.3) the resulting density function function fy, v, (u1,us3) of (U1, Uz)
is given by

( 02(0, + 0) exp [— (61 + Q)uy — Ogug] , Uy > U
fUl,Uz (ul,u2) =< 0 (92 + 9) exp [— O1uy — (92 + 9)’11,2] s u] < U2 (3.14)
\0exp[—(91+02+0)u], Uy =uUg =u

which is the bivariate exponential of Marshall and Olkin type, which completes the
proof.
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3.2 Bivariate dependence of distributions with Pareto

In this subsection we will study the bivariate dependence of the bivariate Pareto
distributions.

Lemma 3.3 The bivariate random variable (X3, X3) defined by the bivariate dis-
tribution

Froalanan) = [1- (—2 )" [1= (=2=) ] [1= (=2)"], 20 = min(a1, 22)

a+zy a+z2 a+ 2
(3.15)

is positively quadrant dependent (PQD).

Proof. A bivariate random variable (X3, X3) is said to be (PQD) (Tong, 1980) if
P(Xl <7,X2 < 372) > P(X1 < 331) P(Xz < wz), Vi, zg. (3.16)

Using the distribution function of (X3, X5) and marginal distributions of X; and X,
we find that:

- (7)1 - G5 1P (i s a e < )

= [1 - (a:zg)o]P(Xl < :z:l)P(Xz < x2), Y, 1,22, zp = min(z1,z2). (3.17)

Note that from (3.17) we can easily verify that the inequality (3.16) holds for all
z1,Z2 , which completes the proof.

Lemma 3.4 The covariance of the bivariate Pareto distribution (X;, X») is given
by:
a%0

COV(XhX?) = (0 +6; — ]_)(0 + 6y — 1)(0 +0;+0; — 2) ”

0, (3.18)

where
0+6;,>1,1=1,2,0+6,+6>>2.

Proof. The proof of this lemma can be reach by calculate the expectations X;, (i =
1,2) and X; X, and substituting in the covariance definition

COV(X1,X2) = E(X]_XQ) - E(X1)E(X2) (3.19)

Now the expectation of X;, (¢ = 1,2) can be calculate from the expectation definition
in the form:

0 00 oo 1%
E(Xi)=/0 /0 xifl(x1a$2)d$2d$1+/0 / wifz(ml,wz)d$2d$1+/o z fo(x, z)dz
xr1
(3.20)
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Substituting (3.3) into (3.20) and after some algebraic manipulation we get

E(X;) = i=1,2. (3.21)

_*
0+6;,-1

Also the expectation of X;X5 can be obtained using

oo T
E(X1X2)=/O /0 z122 f1(21, r2)dzodT1+

/ / wlwzfz(wl,wz)divzdx1+/ 22 fo(z, z)dz. (3.22)
z1

Substituting (3.3) into (3.22) and after lengthy algebraic mampula’cxon we get the
expectation of X; X, in the form:

a?(20 + 0, + 6 — 2)
(0+60, —1)(0+02—1)(0+0, +0:—2).
Substituting (3.21) and (3.23) into (3.19), one gets the formula (3.18) of the covari-

ance of (X1, X>). Hence the covariance of (X7, X2) is positive which completes the
proof.

E(X1X2) =

(3.23)

Lemma 3.5 The random variable X, is a left-tail decreasing function of the random
variable X if X; < X5. Further also the random variable X is a left-tail decreasing
function of X; if X; > Xo.

Proof. The proof of this lemma can be achieved using definition of a left-tail of X3
and X5. The random variable X, is a left-tail decreasing function of Xy if
P(X; < z/Xy < 35) (3.24)

is non-increasing function of the random variable Xo.
Using the above definition and the bivariate distribution (3.15) one can easily
gets:

Pz s ) = - () 0 (o) Tt 029
where 4 i1 ' '
By (z0) = [1- (a+x2) ] (3.26)

We note that the function ®;(z5) is non-increasing function of z3. Since, if we
assume that zo < 3, then we can easily verify that ®;(z2) > ®1(z3) which leads to
®, (z2) non-increasing function of z2 if X; < X3 for all z;, therefore X is a left-tail
decreasing function of z3. Similarly we can also verify that X, is also a left-tail
decreasing function of z; if X; > Xa.

Next, the rest of this paper we will concerned with the mixture of bivariate
Pareto distributions and Pareto competing risk models.
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4. MIXTURE OF BIVARIATE PARETO

This section deals with the mixture of bivariate Pareto distributions with a
latent variable which is also Pareto distributed. Also, the dependence of mixture of
bivariate Pareto is proved to be positive as expected.

4.1 Mixture of bivariate Pareto distributions

In this subsection we consider the case n = k = 2 for simplicity, that is under the
plan of the bivariate two component mixture of Pareto distributions. Then, from
(2.8) it follows that the joint survival function of the mixture S; and Sz will take
the following form

F(s1,82) = P(S1 > 51,82 > 82) = P(X1 > 81)P(X2 > $2) P(Z > s0)

= (a —fso)o {pu(a —zsl)ou (a 332)021 +p12(a —:—131)011 (a —332)022

+P21(a :31)012 (a _zsz)ezl +p22(a _:_181)012 (a :Sz)azz} (4.1)

where X; and X, have mixture of Pareto distributions that denoted by

X, ~ [a1P(a,011) + (1 — a;) P a 612)],
X1 ~ [a2P(a,021) + (1 - a2)P(a,022)], -

and
pij = a> "3 (1 — a1)i"1(1 — ag)i Y, Vi, 5 € {1,2}. (4.3)

Form the relation (4.1) we can conclude that

1. For i,j € {1,2}, p;; 2 0 and p11 + p12 +p21 +p22 = 1.

2. Every term of the right hand side of F(sy,s2) which given by equation (4.1)
has a survival function of a bivariate Pareto distributions.

Therefore we can easily conclude that, the survival function (4.1) can be considered
as the joint survival function of a mixture of four bivariate Pareto distributions.

Now the following Theorem gives the joint probability density function of the
mixture S; and Ss.

Theorem 4.1 Using the joint survival (4.1) of the mixture 57,52, then the joint
pdf of Si, 52 say f(s1,s2) is given by

fi(s1,82) s1> 82
f(s1,82) = ¢ fa(s1,82) 81 <s2 (4.4)
fo(s0,80) s1=s2=399
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where

fi(s1,82) = {p11921(911 +0)

+p12022(011 +

9)
+p21621 (012 + 0) (

+p22021 (022 + 6 (

fa(s1,82) = {1011911(921 + 6) (

+p12611(622 + 6)

8
o +
@
&

>

+

-

(
+p21012(621 + 6) (

(
1( a \0a+l
a+ sy a+ sy
+pabizlin +0) ( + 81)912+1 (a :’52)9““} (a —zsz)e
fo(s0,50) =0a™? {pu (a _:_ZSO)OHHMHH +p12(a fso)0u+022+0+1
. (a jso)am+ezl+e+1 +P22(a fso)elz+ezz+e+1} . ws)

Proof. The forms of fi(s1,s2) and f2(s1, s2) can be obtained by differentiating the
joint survival function F(s1, so) with respect to s; and s3. But the function fo(so, so)
can not be derived in a similar method. In fact to derive the function fo(sg,so) we
will use an identity similar to (3.4).

Corollary 4.1 The expectations of S; (i = 1,2) and S15; are given by :

a; n 1——a,~
0+6;;1—1 0+0,—1

E(S:) = a| [ =12 (4.6)

and
P11(260 + 611 + 021 — 2)
(0 + 611 — 1)(9 + 621 — 1)(0 + 611 + 021 — 2)
P12(26 + 611 + 022 — 2)
(0 + 011 — 1)(6 + 022 — 1)(0 + 611 + 022 — 2)
+ P21(26 + 612 + 021 — 2)
(64612 —1)(6 4 621 — 1)(6 + 612 + 021 — 2)

" p22(29 + 812 + 099 — 2) }
(0 + 612 — 1)(6 + 622 — 1)(0 + 612 + 022 — 2)

E(S152) = a2 {

+

(4.7)
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Proof. The proof of this Corollary can be reached using directly the definition of

the mixture expectations taking into considerations the bivariate expectations that
given by (3.21) and (3.23).

Corollary 4.2 The mixture of bivariate Pareto that defined by the density function
(4.4) is positively dependent.

The proof of this Corollary can be achieved by substituting from (4.6) and (4.7) into
Cov(S1,S2) = E(5152) — E(51)E(S2). (4.8)

After lengthy algebraic manipulation one gets:

Cov(S1,S3) = a%0 i
V(51 52) = &8 | G T8 1 O — D0+ 01 % 01 = 2)
+ D12
(04011 —1)(0+ 022 — 1)(0 + 011 + 052 — 2)
P21

0T 012 —1)(0+ 021 — (O + 00z + 631 —2)

2 2

P22

+ - >0, 36 + 0;; >4
(0+912—1)(0+022-—1)(0+012+022—2)] ;Jzz:l J

(4.9)
Therefore the mixture of bivariate Pareto distributions is positively dependent.

5. COMPETING RISK PARETO MODELS

In this section we propose a Pareto competing risk models. These models arise
in situation in which fail of the components is due to several different causes. In
such situations every system failure is caused by only of the competing risks. In
the present work we consider each competing risk has a mixture of Pareto and the
latent variable is also Pareto distributed.

Assume that an item may fail due to any one of the mutually exclusive causes
{Ci,...,Ck}, that is the item fail due to the cause C; then the item did not fail
due to any other cause {C;}, j # i. Risks {Cj}, j # i as well as the risk of failure
due to the cause C; are called competing risk. Such a situation can arise when an
item under test has k different components and the item fails as soon as any one of
the components fails. Therefore k different components can designated as k causes
{C1,...,Cy} of fail and the i-component to fail would be due to the cause C;.

Now we develop the distribution of the minimum. Assume that the random
variable X; be a mixture of X, Xjs,..., X every of them say X;; has a Pareto
distribution with parameters (a,6;;) and the mixing probability are a;1, a2, . .., @i,
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that is Z;?: a;; = landa;; > 0Vi = 1,2,...,n. Now, consider one latent random
variable Z which is Pareto distributed with parameters (a,8) and it is independent
of X1, Xs,...,X,. Also we define the lifetime of the system T as

T=min(X1,X2,...,Xn,Z) (51)

Therefore, the survival function of system is defined as:

P(T > t) = P[min(Xl,Xg,...,Xn,Z) > t] =P(Z>t) ﬁP(Xi > t) (5.2)

=1

Since every X; is a mixture of Pareto and Z also, one gets

n k B n :
P(T>t)=(ait)onlzlaij(aj_t)au=_HlP(Ti>t) (5.3)
t=17= 1=

where T; is a mixture of Pareto distributions with parameters (a, %+9¢j) and mixing
probability a;q,ag, ..., 6.
Thus, we find that the survival function of the system can be expressed as:

FT(t) = H FTi (t) (5.4)

Therefore, the probability density function of the lifetime 7" of the system can be
obtained as follows:

= 1

d
f(t)_——PT>t)_—-P(T>t PT;>t) =
T ( )Z; P(T, > t) dt )
T > t _ = fTi(t) — >
ZP Ty =FOL B =0 ko 69
and so the hazard function of T is given by
_frt) _ < ‘

The average of the mean time to failure of the system is defined
oo [e ] d _ o0 —
B(T) = / t fr(t)dt = — / t=Fr(t)dt = - / t dFp(2) (5.7)
0 0 0

Using the integration by parts and properties of Fr(t), one gets

X _ oo T _ oo N t
= / Fr(t)dt = / H Fr,(t)dt = / H e fo hr;(T)dr 4y



A. El-Gohary 67

o 0o n
=/0 He‘HTi(t)dt=/0 e"zi=1HTi(t)dt, (5.8)

where Hr,(t) = fo hr,(7)dr is the integrated hazard rate function of T;, (i = 1,...,n)

5.1 Mixture Pareto model

In this subsection we will develop the distribution of the minimum and the
corresponding hazard function for the mixture of Pareto distributions.

Now we define § = min(Si,...,S,), as the minimum of mixture of multivariate
distributions with Pareto, then the survival function of S is given by

F(s) = P($ > s) = P min(81,..., 5p) >s|=P[81>5,85>s,..,5 > 5]

7 n k .8
=P(Z>s)[[P(Xi>s) = Hzaij(ais)(own)
i=1j=1

=1

Fr,(s) (5.9)

s

ﬁ P(T; > s) =

i=1 =1

where the density function of T}, (i = 1,...,n) is given by

k . (6:5+2+1)
i) = Yoy (PLE) (L) s G=1m (510)

= na a+t

Hence, the density function of the minimum S takes the form

n
= f1,(s)
s) = Fs(s = 5.11
fr(s) = Fs( )Z;Fn(s) (5.11)
Therefore the hazard function corresponding to the minimum S reduces to
n
hs(s) = hr(s
i=1
where .
(0:54+2+1)
Z n0 +9 _a n
hay(s) = =212 (M5 (%) (i=1,...,n) (5.12)

K :5+8)
Shea (3%)
is the hazard function of T}, : = 1,...,n.

In what follows we will obtained a special case that occurs when we put k = 2
and n = 2 in (5.9). This case represents a mixture of bivariate Pareto distribution
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with Pareto latent random variable. Then the density function of 77 and T3 are
given by

B 20,1 + 0 a (611 +5+1) 2015 + 0 a \(z+5+1)
() =a(F27) (%) ) (P20 ()

8 8
(260 + 6 a )(921"'5“) 2022 + 6 ( a )(922"'5“)
sz(t)_a2( 2a )<a+t +(1 a2)( 2a ) a+t
(5.13)
and the survival function of T is given by
_ a (011+021+6) a (011+622+8)
Fr(t) =
T(t) = P11 <a+t) + D12 <a+t)
a (f12+6021+6) a (012+622+9)
1
+pa1 (a-l—t) + p2o (a+t> , (5.14)

which represent a mixture of four pareto distributions with parameters (a,8;; +
0/2),i,7 = 1,2 and a mixture of bivariate Pareto distributions with parameters
(a, 6;;) with mixing probabilities p;;, 4,5 = 1, 2.

6. CONCLUSION

The new class of models developed in this paper has many different applications
in different fields. In this paper we present a new class of multivariate Pareto
distributions. The obtained class includes bivariate models including Marslall and
Olkin type. The bivariate Pareto is associate and positively quadrant dependent.
The approach in this paper is based on the introducing a Pareto distributed latent
random variable. The distribution of minimum in a competing risk reliability model
is discussed.
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