Comm. Korean Math. Soc. 9 (1994), No. 4, pp. 951-959

THE INVARIANCE PRINCIPLE FOR LINEARLY
POSITIVE QUADRANT DEPENDENT SEQUENCES

TAE-SUNG KIM AND KWANG-HEE HAN

1. Introduction

A sequence {X; : § > 1} of random variables is said to be pairwise
positive quadrant dependent (pairwise PQD) if for any real r;,r; and
vtFJ

# P{X,‘>T‘,’,Xj>TJ'}ZP{X1‘>T,'}P{XJ'>T]'}

(see [8]) and a sequence {X; : j > 1} of random variables is said to
be associated if for any finite collection {Xj(;)....,Xj(»)} and any real
coordinatewise nondecreasing functions f,g on R"

Cov(f(Xjys---» Xjm)) 9(X a1y, Xjm))) = 0,

whenever the covariance is defined (see [6]). Instead of association Cox
and Grimmett’s [4] original central limit theorem requires only that pos-
itively linear combination of random variables are PQD (cf. Theorem
A*).

A sequence {X; : j > 1} of random variables is said to be linearly
positive quadrant dependent (LPQD) if for any disjoint A, B and pos-
itive r}s Zr,-X,- and Zr]—Xj are PQD (see [9]). Let us remark this

€A JEB
concept of dependence is between pairwise PQD and association and it
is well known. (see, for example, [8]) that neither pairwise PQD nor
LPQD nor association implies the other. Using the coefficient of maxi-
mal covariances
u(n) = sup Z Cov(X;. X%)
£21 51—kl 2n

Birkel [3] proved the central limit theorem and the invariance principle
for LPQD sequences:
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THEOREM A*(BIRKEL, 1988). Let {X; :j > 1} be an LPQD se-
quence with EX; = O,EX]? < 0o0. Assume

(1.1) u(n) —, 0,u(1) < oo,
(1.2) 0';2 ZEXle{IXjIZE"n} —, 0 for € > 0,
(1.3) infn21n"10i > 0.

Then {X; : j > 1} fulfills the central limit theorem.

THEOREM B*(BIRKEL, 1993). Let {X; : j > 1} be an LPQD se-
quence with EX; = 0. Assume that

(1.4) o720k, —n k for k>1,
(1.5) u(n) = 0(n~?) for some p > 0,
(1.6) sup E|X;|**® < oo for some § > 0

Then {X; : 7 > 1} fulfills the invariance principle, that is,
Wa(t) = JJIS[M], t €[0,1],

converges weakly to standard Brownian motion W on the set of all func-
tions on [0, 1] which have left hand limits and are continuous from the
right.

It is the purpose of this note to show that Theorems 1 and 2 of Birkel
[2] still holds for LPQD sequences and thus to weaken (1.5) and (1.6).
All results are stated in Section 2. The proofs of our theorems as well
as some lemmas are given in Section 3.

2. Results

THEOREM 2.1. Let {X;:j > 1} be an LPQD sequence with EX; =
(),EX]2 < 00. Assume

(2.1) 0. E(SpkSnt) —n min{k, I} for k,12>1,
(2.2) {072 (Spsm — Sm)? :m > 0,n > 1} is uniformly integrable.

Then {X; : j > 1} fulfills the invariance principle.
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THEOREM 2.2. Let {X;:; > 1} be an LPQD sequence with EX; =
0,EX; 2 < 0o. Then the fo]lowmg assertion are equivalent:
(7) Condmon (2.1) is fulfilled and

(2.3) - {X; :j > 1} satisfies the central limit theorem,

(22){X; : j > 1} fulfills the invariance principle.

COROLLARY 2.3. Let {X; : j > 1} be an LPQD sequence with
EX; = 0,EX} < oo. Assume that (1.1), (1.2), (1.3), and (1.4) hold.
Then {X; : j > 1} fulfills the invariance principle.

Proof. According to Theorem A* of Birkel (3], {X; : 7 > 1} fulfills
the central limit theorem. Hence, by Theorem 2.1, it suffices to prove
(2.1). It is easy to see that Lemmas 1 and 2 of Birkel [2] still hold for
random variables which are nonnegatively correlated. Hence since (1.4)

1s fulfilled, (2.1) follows from

(24)  0,.2E((Snj — Sni)(Snt — Snk)) =a 0 for [ >k >35> >0.
according to Lemma 2 of Birkel [2]. But (2.4) is a simple consequence
of the estimate

n(j~—i)

0<L U;ZE((SM‘ - S, )(Snl — nk) 2 Z u(v

and the assumptions (1.1) and (1.3).

COROLLARY 2.4. Let {X; : j > 1} be an LPQD sequence with
EX; =0,EX? < oo. Assume that (1.1), (1.2) and the following condi-
tion (2.5) hold.

(2.5) n~lol —, 0%(0, )

Then {X; : j > 1} fulfills the invariance principle.

Proof. Since (2.5) implies (1.3) and (1.4) {X, : j > 1} fulfills the
invariance principle according to Corollary 2.3.



954 Tae-Sung Kim and Kwang-Hee Han

COROLLARY 2.5. Let {X; :j > 1} be a wide sense stationary LPQD
sequence with EX; = 0, EX;‘-’ < 0o. Assume that (1.2) and the following
condition (2.6) hold.

(2.6) 0 < o0? = Cov(X;,X1) +2) Cov(X1,X;) < oo,
j=2
Then {X; : j > 1} fulfills the invariance principle.

Proof. 1f {X; : j > 1} is stationary in the wide sense, condition
(2.6) implies (1.1) and (2.5). Hence {X; : 7 > 1} fulfills the invariance
principle according to Corollary 2.3.

3. Proof

The following lemma is a generalization of Theorem 2 of Newman
and Wright [10] and will be used to provide the tightness needed for our
invariance principle.

LEMMA 3.1. Let {X; : j > 1} be an LPQD sequence with EX; =
O,E'X]2 < oo. Define forn > 1,m > 0,

Smn = Sntm — Sm and My, , = max(Sm 1, -5 Sm,n)-
Then

(3.1) E(M7, ) < E(S7, ,).

Proof. This lemma can be proved along the lines of the proof of
Theorem 2 of Newman and Wright [10].
We next define for n > 1,m > 0,

Shn =max(0,Sm1,Sm2, - Smun), s2n = E(S% L)
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LEMMA 3.2. Let {X; :j > 1} be an LPQD sequence with EX; =
O,EXJ2 < oo. Then for Ay > Ay > 0,

2

(3.2) P(S, < A) (11— 2)_1P(Sm,n < A)

(A2 = A1) -
(3-3)  P(max |Sm,j| 2 Asm,n) 2 2P(|Sm,n| < (A = V2)5m,n)
sosn

Proof. For Ay < Ay,
(3.4)
P(S:n,n > /\2)

< P(Sm,n > A1)+ P(S;, > A2, Spne1 — Smn 2> A2 — A1)

m,n—1
S P(Smn 2 2)+ P(Sh 1 2 22)P(Sh 1 = Smn 2 A2 — A1)
E((Shn-1 = Sm,n)*)

< P(Spn>A P(S: . > A
= (S n = 1)+ (Sm,n - 2) ()\2 _)\1)2

where the second inequality follows from the fact that S}, ,,_; and Sy n—
Sm n—1 are PQD random variables since the XJ’~S are LPQD random vari-
ables and the third inequality follows from the Chebyshev’s inequality.
Now Lemma 3.1 with X, replaced by Yiy = —Xn—it1+m yields that

E([S:n,n-l - Sm,n]2)
= E([max(Yi4m, Yi4m + Yotmy-- - Yigm + Yogm + - + Yoim)]?)
< E(Sh.) = st

m,n’

which together with (3.4) yields (3.2) for (A2 — A1)? > sZ, . By adding
to (3.2) the analogous inequality with each X;;,, replaced by —X;im
in (3.2), and by choosing A; = Asp n, A1 = (A — ﬁ)sm,n,(3.3) will be
obtained.

Proof of Theorem 2.1. Condition (2.1) implies (1.4) and Lemmas 1
and 2 of Birkel [2] still hold for random variables which are nonnegatively

correlated.
Hence we obtained

(3.5) a;2a[znt] —, t for t >0,
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(3.6) a,sz{(S[nt] = S(ns) )(Sinv] = S(nu))} —n 0,

for0<s<t<u<y.
Let X be a limit in distribution of a subsequence of {W,, : n > 1}. First
we show that X is distributed like W. By (2.2) and (3.5) {W, : n > 1}
and {WZ(t) : n > 1} are uniformly integrable for every ¢ € [0, 1]. As

Wa(t) —a X(2), Wr%(t) ~n XQ(f)
in distribution (for a subsequence), Theorem 5.4 of Billingsley [1] and
(3.5) imply
EX(t)=0, EX*(t)=t.

According to Theorem 19.1 of Billingsley[1], X is distributed like W if
X has independent increments, that is,

(3.7) X(t) ~ X(to), ..., X(tr) — X (tr—;)

are independent for all £ > 1,0 <t <t; <.-- <t = 1.
To show (3.7), put

Uni - Wn(tz) - Wn(ti—l)a 1 S t S k.
Then the U,; are LPQD random variables, fulfilling
(Unts-- - Uni) =n (X(t1) = X(t2), ..., X(tx) — X (tr-1))

in distribution (for subsequence). By Lemma 4 of Birkel (3] the X (¢;) —
X(ti—1) are LPQD. Using Theorem 5.4 of Billingsley[l] and (3.6), we

get, for ¢ # 7,

COV(X(ti) - X(t,'_l),X(t]‘) - X(t]‘_l)) = ligr}Cov(Um-, Un]) = 0.

Applying (3.3) to the random variables involved in Theorem 2.1, we
have, for A > 2v/2,

1
(3.8) P{m(ax|5i+m — S| 2 Asmn} > 2P{|Smin — Sm| > 5/\3,,11,1}.
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(2.2),(3.8) and Theorem 8.4 of Billingsley [1] yield the tightness of the
sequence {W, : n > 1} and P{X € CJ[0,1]} = 1 by Theorem 15.5 of
Billingsley [1]. Thus the proof of Theorem 2.1 is complete.

Proof of Theorem 2.2. (i) = (it). Like in the proof of Theorem 2.1
we obtain relations (3.5) and (3.6). From (2.3) and (3.5) it follows for
t>0

(3.9) 07" S[ny) —n N(0,%) in distribution.

We will prove for 0 < s < ¢,

(3.10) 07 (S(ng = Sins]) —n N(0,t — s) in distribution.

To see (3.10): Let 0 < s < t be given. Then the sequence
{(07" Stns), 0 Sng)) - 10 2 1}

is tight ([1, p.41 problem 6]). Let @ be a probability measure on the
Borel —o algebra of R? such that for a subsequence

(UTTIS[M],U;IS[M]) —, @ in distribution.
Then we have
07 sl 0 (Sing = Sinsl)) —n Q1,72 — 1) 7! in distribution,
[ns]: On (P[ng] [ns]

where m; : R? — R,i = 1,2, are the natural projections. Since the
random variables Wy (s) and W,(t) — W,(s) are PQD by the definition
of LPQD. Lemma 4 of [3] implies that 7y and m; — 7; are PQD with
respect to Q). According to (3.9), the sets

{(Wa(s) :n 21} {Wa(t) :n > 1} and {W,(s)W,(t) :n > 1}

are uniformly integrable. Hence, using Theorem 5.4 of Billingsley [1] and
(3.6) we obtain

Cov(my,mp —m) = lig}Cov(a,le[m], o7 (Spng — Sinsp)) = 0.
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As uncorrelated, LPQD random variables, 7, and my — 7; are @Q-inde-
pendent. Since Qm; ' = N(0,s),Qm; ! = N(0,t), this proves (3.10).
(3.8), (3.10) and Theorem 8.4 of [1] yield by standard argument the
needed tightness of the distribution of the W) s to obtain the desired
convergence in distribution. (see the proof Theorem 10.1 of Billingsley
[1])
(22) = (2). It suffices to see that condition (2.1) holds. Assume that the
invariance principle is fulfilled. By Remark 2.3 of Herrndorf (7] it follows
that 0,202, —, k, for k > 1. Since Lemmas 1 and 2 of Birkel [2] hold
for random variables which are nonnegative correlated random variables
it remains to prove
(+)

UTTZE((S[M] — S[m])(S[m,] — S[nu])) —p0for 0<s<t<u<v <1,

To prove (x): Let 0 < s < ¢t < u <1 be given. Since the invariance
principle is fulfilled, {252 : n > 1} is uniformly integrable, according
to Lemma 1 of Birkel [2]. As
(Wa(t) = Wa(s), Wn(v) = Wi(u)) = (W(t) = W(s), W(v) — W(w))
in distribution,

it follows that o7 2(Sing— Sins))(Sne) = Sinuy) —=n (W(t) =W (s))(W(v)—-
W (u)) in distribution. According to Theorem 5.4 of Billingsley [1],

U;2E((S[nt] - S[ns])(s[nv] _S[nu])) —n E((W(t)_W(‘S))(W(U)“W(u)))
But
E(W(t)-W(s))(W(v)=W(u)))=EW(?)-W(s)E(W(v)-W(u))=0,
which proves (*).
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