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Abstract

In this note we prove a functional central limit theorem for LPQD se-
quences, statisfying some moment conditions. No stationarity is required.
Our results imply an extension of Birkel’s functional central limit theo-
rem for associated processes to an LPQD sequence and an improvement
of Birkel’s functional central limit theorem for LPQD sequences.

1. Introduction and Main results

A sequence {X; : j € N} of random variables is said to be pairwise
positive quadrant dependent(PQD) if for any real r;,r; and i # j

P{X,' > r;,Xj > r,-} > P{X;‘ > ri}P{Xj > rj}~

This notion of positive dependence was introduced by Lehmann [5] and
a much stronger concept than PQD was considered by Esary, Proschan,
and Walkup [4]. A sequence {X; : j € N} of random variables is said to
be associated if for any finite collection {Xj(;), -+, Xj(n)} and any real
coordinatewise nondecreasing functions f,g on R™

Cov(f( X1y, Xjtmy) X1y, Xjtny)) = 0y

whenever the covariance is defined. Newman [6] was the first who showed
the central limit theorem for associated sequences. In the following years
several extensions and generalizations of this result were given. There exist
several (functional) central limit theorems [2,6,7] for associated processes.
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Most of these results, however, cannot be applied to weaker concepts of
positive dependence.  Instead of association Newman’s original central
limit theorem requires only that positively linear combinations of the ran-
dom variables are PQD. The following definition of positive dependence
was introduced by Newman [6] as an extension of the bivariate notion of
PQD of Lehmann [5]. A sequence {X; : j € N} of random variables is
said to be linearly positive quadrant dependent (LPQD) if for any disjoint
A, B and positive real ris

erXj and erXj are PQD.
JEA JjeB

Let us remark that this concept of dependence is between pairwise PQD
and association. Using the coefficient of maximal covariances

u(n) = sup Z Cov(X;, Xi)
FEN j=1i=kl2n

Birkel [2] proved the central limit theorem for nonstationary associated
random variables(see Theorem 3 of [2]) and it was not explicitly men-
tioned, but it is easy to see that this theorem still holds for LPQD pro-
cesses(cf.[3]).

THEOREM A (BIRKEL). Let {X;:j € N} be an LPQD sequence with
EX; =0,
E'Xf < 00. Assume

(1.1) u(n) —np 0, u(l) < oo,
(1.2) a;? Z E(ijlﬂ,w(”Z,,n}) —, 0 for € >0,
e~
- -1_2
(1.3) ,}Ielfv" o, > 0.

Then {X; : j € N} fulfills the central limit theorem.
Birkel [3] also proved the following functional central limit theorem under
more sharpencd conditions than (1.1) and (1.2).
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THEOREM B (BIRKEL). Let {X;:j € N} be an LPQD sequence with
EX; =0,
EX;* < co. Assume that (1.3) and the following conditions (1.4), (1.5),
and (1.6) hold.

(1.4) u(n) = O(n~*) for some p >0,

(1.5) sup E|X; I**® < oo for some § > 0,
JEN

(1.6) 020, —n k for k€ N.

Then {X; : j € N} fulfills the functional central limit, that is, Wy (t) =
0" Sing> t € [0,1] converges weakly to standard Brownian motion W
on the set of all functions on [0,1] which have left hand limits and are
continuous from the right.

In this paper we will weaken (1.4) and (1.5) to (1.1) and (1.2) and thus
improve Theorem B. (Theorem of Birkel[3]).

THEOREM 1.1. Let {X;:j € N} be an LPQD sequence with EX; =
0,EX} < oco. Assume that (1.1), (1.2), (1.3), and (1.6) hold. Tben
{X; : j € N} fulfills the functional central limit theorem.

COROLLARY 1.2. Let {X;:j € N} be an LPQD sequence with EX; =
0,EX? < co. Assume that (1.1), (1.2), and the following condition ( 1 7)
hold.

(1.7) n"lo? —, 0t , 0<o?< oo,

where -
0% = cov( Xy, X1) +2) _ cov( Xy, X;).
j=2
Then {X; : j € N} fulfills the functional central limit theorem.
proof. Since (1.7) implies (1.3) and (1.6) {X, : 7 € N} fulfills the
functional central limit theorem according to Theorem 1.1.

I {X; : j € N} is stationary in the wide sense, 0 < 05 < 0o obviously
implies (1.1) and (1.7). Hence we obtain:
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CoroLrAnry 1.3. {X; : j € N} be a wide sense stationary LPQD
sequence with EX; = 0, EX} < oo. Assume that 0 < 03 < oo and (1.2)
hold. Then {X; : j € N} fulfills the functional central limit theorem.

2. Proof

The following lemmas will be used to provide the tightness needed for
our functional central limit theorem.

LEMMA 2.1. Let {X; : j € N} be an LPQD sequence with EX;
0,EX? < co. Define forn € Nym € NU{0},5, = X1 ++- -+ Xn, Smn

Sn+m - Sm, Mm,n = max(sm.ls Tty Sm,n),
Then,

(2.1) E(M}, ) < E(Sh )

proof. This theorem can be proved along the lines of the proof of The-
orem 2 of Newman and Wright [9].
We next define for n € Nym € N U {0},

S:n,n = max(O, Sm,lasmﬂa e 9Sm,n)a S?n,n = E(S?n,n)'

LEMMA 2.2. Let {X; : j € N} be an LPQD sequence with EX; =
0, EX? < 0o Then, for A\; > A; > 0,

(22) P(S;g,n 2 ’\2) < (1 - ‘an,n/(AZ - ’\l )2)—1P(Sm,n 2 ’\1)

(23) P(max (1Sm,jl) 2 Asmn) < 2P(|Smnl 2 (A - V2)sm,n)

Proof. For A\; < ),
(2.4)
P(S;z,n 2 A2)

S P(Sm,n 2 ’\1) + P(S:n,n—l 2 ’\2a S:n,n—l - Sm,'n > /\2 - ’\1)
S P(Smn 2 M)+ P(Spne1 2 A2)P(Sh i = Smn 2 A2 — A1)

S P(Sma 2 M)+ P(Sh 0 2 2)E((Sq ne1 = Smin)*)/ (A2 = A1)?

where the second inequality follows from the fact that Sy, ,_, and Sy, —

Sm,n—1 are PQD since the X|s are LPQD random variables and the third
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inequality follows from the Chebyshev’s inequality. Now Lemma 2.1 X4y,
replaced by Y4 = —Xp—i+14m yields that,
E([Sh,n-1 = Sm,n]*)
= E([max(y'l+m’yl+m + }/2+m’ tty Yi-{-m + Y2+m +-o Yn+m)]2)
< E(Smn) = S

which together with (2.4) yiclds (2.2) for (A2 — A;)? > s2, . By adding to
(2.2) the analogous inequality with each X4 m replaced by — X4 m in (2.2)
and by choosing A2 = Asm.nv A1 = (A = V2)8m n, (2.3) will be obtained.

Proof of Theorem 1.1. : It is easy to see that Lemmas 1 and 2 of
Birkel[2] still hold for random variable, which are nonnegatively correlated.
Hence it follows from (1.6) that

(2.4) 07200 —nt for t >0,

(25) U;ZE((S[M] - S[ns})(s[nv] - S[nu])) —p0for0<s<t<u<w.

Let X be a limit in distribution of a subsequence of {W, : n € N}. We
apply some techniques on lines of the proof of Theorem of Birkel [3]. It
suffices to show that X is distributed like W. By Theorem A and (2.4) we
obtain for ¢ € [0,1]

(2.6) W, (t) —. N(0,t) in distribution.
Hence the sets {W,(t) : n € N} and {WZ(t) : n € N} are uniformly
integrable. As W,(t) —, X(t), W2 (t) —, X? () in distribution
(for a subscquence),

EX(t)=0, EX*t)=t
by Theorem 5.4 of Billingsely[1] and (2.4). According to Theorem 19.1
of Billingsely[1], X is distributed like W if X has independent increments,
that is,
(2.7) X(t) - X(to), -, X(t) — X(tx-1)

are independent forall k > 1, 0<¢g<t; £ <t < 1.
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To show (2.7), put
Un,i = ‘Vn(ti) - Wfll(ti—l)s 1< : S k.
Then the U,; are LPQD random variables, and
(Unly Tty Unk) —*n (‘Y(tl) - X(tO)v e aX(tk) b X(tk—l))
in distribution (for a subsequence). Thus by Lemma 4 of Birkel[3] the
X(ti)— X (ti=1) are LPQD. Using Theorem 5.4 of Billingsely [1] and (2.5),
we get, for i # j,

Cov(X (£:) = X(ti-1). X(t;) = X(t-1)) = lim Cov(Uni, Usj) = 0.

Hence the X(¢;) — X(t;_,) are uncorrelated, LPQD random variables and
thus independent by Theorem 6 of Newman [6]. This proves (2.7). Now
it remains to prove the needed tightness. Applying (2.3) to the random
variables involved in Theorem 1.1, we have for A > 2v/2,

i<n
We will prove, for 0 < s < t,
(2.9) a,."(s[,.,l — S{ns]) —n N(t — s) in distribution

To show (2.9) we use the technique of the proof of Theorem 2 of Birkel[2].
Let 0 < s <t be given. Then the sequence

{(Un—l's[na]v Un-—ls[nt]) ne N}

is tight(see [1] p 41 problem 6). Let @ be a probability measure on the
Borel o—algebra of R? such that for a subsequence

(a,,"IS[,,,],an‘lS[,,,]) —, @ in distribution.
Then we have

(0’,,—15[,,,],0'"_1(5[“‘] - S[na})) —q Q(my, 7y, —my )-1 in distribution,
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where 7; : R? = R,i = 1,2, are the natural projections. Since the random
variables 0,71 S}, and 0, 7} (S[n1)— S[ns)) are PQD, Lemma 4 of [3] implies
that 7; and 7z —7; are PQD with respect to Q. According to (2.6), the sets
{027 Sna) i 7 € N}, {627 Sny : n € N} and {002 5[na}S(ng : n € N}
are uniformly integerable. Hence, using Theorem 5.4 of Billingsley [1] and
(2.5), we obtain

Cov(vrl, Ty — 7rl) = rl‘ier?vcov(an-ls[na]a a'n“l(s[nt] - S[ns})) =0.

As LPQD and uncorrclated random variables, 7; and 7, — 7, are Q-
independent. Since Qm,~! = N(0, s), Qm2~! = N(0,t), this proves (2.9).
(2.8) and (2.9) yicld the needed tightness of the sequence {W, : n € N} by
the standard argument (see the proof of Theorem 10.1 in Billingsely[1]).
Thus the proof of our theorem is complete.
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