• Title/Summary/Keyword: positioning control

Search Result 1,160, Processing Time 0.028 seconds

Positioning control of a redundant actuator

  • Sasaki, M.;Setta, M.;Satoh, K.;Fujisawa, F.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.605-610
    • /
    • 1994
  • This paper discusses the solution to the precise positioning control problem applied to a simple model of a dual stage or redundant positioner. The dual stage actuator presented here uses a VCM(Voice Coil Motor) as a coarse actuator and a piezoelectric actuator as a fine actuator. By adopting controllers with two-degree-of-freedom and by optimizing H$_{2}$ faster precise tracking can be realized. Experimental and numerical results are presented to demonstrate the control effects.

  • PDF

Optimal Design of Controller for Ultra-Precision Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 최적제어기 설계)

  • Kwak, L. K.;kim, J. Y.;Yang, D. J.;Ko, M. S.;You, S.;Kim, K. T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.342-347
    • /
    • 2002
  • After the industrial revolution in 20 century, the world are preparing for new revolution that is society with knowledge for a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. Performance test of servo control system that is used ultra-precision positioning system with single plane X-Y stage is performed by simulation with Matlab. Analyzed for previous control algorithm and adapted for modern control theory, dual servo algorithm is developed by minimum order observer, and stability and priority on controller are secured. Through the simulation and experiments on ultra precision positioning, stability and priority on ultra-precision positioning system with single plane X-Y stage and control algorithm are secured by using Matlab with Simulink and ControlDesk made in dSPACE

  • PDF

Development of Lighting Control System Based on Location Positioning for Energy Saving (에너지 절약을 위한 위치측위 기반 조명 제어 시스템 개발)

  • Cho, Kyoung-Woo;Jeon, Min-Ho;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2968-2974
    • /
    • 2014
  • When lighting has installed indoor, we control lighting using human-detecting sensors for people who pass at night and places that are lack of quantity of light. However, malfunction can be caused by positions of inappropriate sensors, and in the case of passages of big buildings, it is a problem that even after a person pass, light apparatuses are turned on for a long time. In this paper, we propose lighting control system based on location positioning for energy saving that control lighting in accordance with passers's position through indoor location positioning. This system use the fingerprinting technology that is one of the location positioning technologies and RSSI data that is collected by a smart device. Using those, it can turn on only lightings that are included in the positioned location and reduce unnecessary power consumption. As a result of experiment, on condition that four people were existing and illumination was 308 lux, we assured reduction effect of 49 Wh.

Channelwise Multipath Detection for General GPS Receivers (일반적인 GPS 수신기를 위한 채널별 다중경로오차 검출 기법)

  • Lee, Hyung-Keun;Lee, Jang-Gyu;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.818-826
    • /
    • 2002
  • Since multipath phenomenon frequently occurs when a Global Positioning System receiver is placed in urban area crowded with large buildings, efficient mitigation of multipath effects is necessary to resolve. In this paper, we propose a new multipath detection technique that is useful in real-time positioning with a general Global Positioning System receiver. The proposed technique is based on a channelwise multipath test statistic that efficiently indicates the degree of fluctuations induced by multipath error. The proposed multipath test statistic is operationally advantageous because it does not require any specialized hardware nor any pre-computation of receiver position, it is directly related to standard $\chi$$^2$-distributions, and it can adjust the detection resolution by increasing the number of successive measurements. Simulation and experiment results verify the performance of the proposed multipath detection technique.

USAT(Ultrasonic Satellite System) for the Autonomous Mobile Robots Localization (무인 이동 로봇 위치추정을 위한 초음파 위성 시스템)

  • Lee, Dong-Hwal;Kim, Su-Yong;Yoon, Kang-Sup;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.956-961
    • /
    • 2007
  • We propose a new distance measurement method and local positioning system for the autonomous mobile robots localization. The distance measurement method is able to measure long-range distances with a high accuracy by using ultrasonic sensors. The time of flight of the ultrasonic waves include various noises is calculated accurately by the proposed period detecting method. The proposed local positioning system is composed of four ultrasonic transmitters and one ultrasonic receiver. The ultrasonic transmitter and receiver are separated but they are synchronized by RF (Radio frequency) signal. The proposed system using ultrasonic waves is represented as USAT(Ultrasonic Satellite System). USAT is able to estimate the position using the least square estimation. The experimental results show that the proposed local positioning system enables to estimate the absolute position precisely.

Robot Calibration with Joint Stiffness Parameters for the Enhanced Positioning Accuracy (위치 정밀도 향상을 위한 관절강성 파라미터 포함 로봇 캘리브레이션)

  • Kang, Hee-Jun;Shin, Sung-Won;Ro, Young-Shick;Suh, Young-Soo;Lim, Hyun-Kyu;Kim, Dong-Hyeok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.406-410
    • /
    • 2008
  • This paper presents a new robot calibration algorithm with joint stiffness parameters for the enhanced positioning accuracy of industrial robot manipulators. This work is towards on-going development of an industrial robot calibration software which is able to identify both the kinematic and non-kinematic robot parameters. In this paper, the conventional kinematic calibration and its important considerations are briefly described first. Then, a new robot calibration algorithm which simultaneously identifies both the kinematic and joint stiffness parameters is presented and explained through a computer simulation with a 2 DOF manipulator. Finally, the developed algorithm is implemented to Hyundai HX165 robot and its resulting improvement of the positioning accuracy is addressed.

Designing Compensators of Dual Servo System For High Precision Positioning (초정밀 위치 제어를 위한 이중 서보 시스템의 보상기 설계)

  • Choi, Hyeun-Seok;Song, Chi-Woo;Han, Chang-Soo;Choi, Tae-Hoon;Lee, Nak-Kyu;Na, Kyung-Whan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1309-1314
    • /
    • 2003
  • The high precision positioning mechanism is used in various industrial fields. It is used in semiconductor manufacturing line, test instrument, Bioengineering, and MEMS and so on. This paper presents a positioning mechanism with dual servo system. Dual servo system consists of a coarse stage and a fine motion stage. The course stage is driven by VCM and the actuator of fine stage is the PZT. The purposes of dual servo system are stability, higher bandwidth, and robustness. Lead compensator is applied to this control system, and is designed by PQ method. Designed compensator can improve property of positioning mechanism.

  • PDF

Robot performance test and calibration systme (로보트 성능측정 및 Calibration 시스템)

  • 김문상;유형석;장현상;허재범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.596-601
    • /
    • 1990
  • When using robot manipulator to carry out autonomous tasks, the positioning accuracy of the robot manipulator relative to a reference coordinate frame is of greate importance. The task program, which is generated by off-line CAD-system and used in actual robot positioning, may cause serious amount of the absolute positioning error of the robot manipulator. In this study, a robot performance test and calibration algorithms are proposed in order to improve the absolute positioning accuracy of the robot end effector. Experiments were also carried out by utilizing the HYUNDAI Robot AE 7601 and KIM2-Tester, a three dimensional measurement system, which is developed in Robotics & Fluid Power Control Lab. at Korea Institute of Science and Technology.

  • PDF

Design of a Controller for Enhancing Positioning Performance of a PZT Driven Stage (PZT 구동 스테이지의 위치 제어 성능 향상을 위한 제어기 설계)

  • Park, J.S.;Jeong, Kyu-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.465-472
    • /
    • 2012
  • This paper describes a new robust control algorithm which can be used to enhance the positioning performance of an ultra-precision positioning system. The working table is supported by flexure hinges and moved by a piezoelectric actuator, whose position is measured by an ultra-precise linear encoder. The system dynamics is very complicated because the movement of the table is governed by both the mechanical characteristics and those of the PZT actuator. So that, the dynamics of the stage was modeled roughly in this paper, and the overall system was formularized to solve the small gain problem. A series of experiments was conducted in order to verify the usefulness of the proposed algorithm. From the experimental results, the positioning performance such as the accuracy, the rise time and the hysteresis nonlinearity were greatly improved.

Dynamic Positioning Control of a Twin-hull Unmanned Surface Ship (쌍동형 무인선의 동적위치제어에 관한 연구)

  • Kang, Minju;Kim, Taeyun;Kim, Jinwhan
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.217-225
    • /
    • 2016
  • Dynamic Positioning (DP) is used to automatically maintain the position and heading of a floating structure subjected to environmental disturbances. A DP control system is composed of a motion controller to compute the desired force and moment and a thrust allocator to distribute the computed force and moment to multiple thrusters considering mechanical and operational constraints. Among various thruster configurations, azimuth thrusters or propeller/rudder pairs tend to make the allocation problem difficult to solve, because these types of propulsion systems include nonlinear constraints. In this paper, a dynamic positioning strategy for a twin-thruster ship that is propelled by two azimuthing thrusters is addressed, and a thrust allocation method which does not require a numerical optimization solver is proposed. The applicability of the proposed method is demonstrated with an experiment using an autonomous boat.