• Title/Summary/Keyword: polynomial equations

Search Result 270, Processing Time 0.021 seconds

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO STOCHASTIC 3D GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS WITH UNBOUNDED DELAYS

  • Cung The Anh;Vu Manh Toi;Phan Thi Tuyet
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.227-253
    • /
    • 2024
  • This paper studies the existence of weak solutions and the stability of stationary solutions to stochastic 3D globally modified Navier-Stokes equations with unbounded delays in the phase space BCL-∞(H). We first prove the existence and uniqueness of weak solutions by using the classical technique of Galerkin approximations. Then we study stability properties of stationary solutions by using several approach methods. In the case of proportional delays, some sufficient conditions ensuring the polynomial stability in both mean square and almost sure senses will be provided.

MULTI-BLOCK BOUNDARY VALUE METHODS FOR ORDINARY DIFFERENTIAL AND DIFFERENTIAL ALGEBRAIC EQUATIONS

  • OGUNFEYITIMI, S.E.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.243-291
    • /
    • 2020
  • In this paper, multi-block generalized backward differentiation methods for numerical solutions of ordinary differential and differential algebraic equations are introduced. This class of linear multi-block methods is implemented as multi-block boundary value methods (MB2 VMs). The root distribution of the stability polynomial of the new class of methods are determined using the Wiener-Hopf factorization of a matrix polynomial for the purpose of their correct implementation. Numerical tests, showing the potential of such methods for output of multi-block of solutions of the ordinary differential equations in the new approach are also reported herein. The methods which output multi-block of solutions of the ordinary differential equations on application, are unlike the conventional linear multistep methods which output a solution at a point or the conventional boundary value methods and multi-block methods which output only a block of solutions per step. The MB2 VMs introduced herein is a novel approach at developing very large scale integration methods (VLSIM) in the numerical solution of differential equations.

Optimization Techniques for Finite field Operations at Algorithm Levels (알고리즘 레벨 유한체 연산에 대한 최적화 연구)

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.651-654
    • /
    • 2008
  • In finite field operations based on $GF(2^m)$, additions and subtractions are easily implemented. On the other hand, multiplications and divisions require mathematical elaboration of complex equations. There are two dominant way of approaching the solutions of finite filed operations, normal basis approach and polynomial basis approach, each of which has both benefits and weakness respectively. In this study, we adopted the mathematically feasible polynomial basis approach and suggest the optimization techniques of finite field operations based of mathematical principles.

  • PDF

An Efficient Rectification Algorithm for Spaceborne SAR Imagery Using Polynomial Model

  • Kim, Man-Jo
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.363-370
    • /
    • 2003
  • This paper describes a rectification procedure that relies on a polynomial model derived from the imaging geometry without loss of accuracy. By using polynomial model, one can effectively eliminate the iterative process to find an image pixel corresponding to each output grid point. With the imaging geometry and ephemeris data, a geo-location polynomial can be constructed from grid points that are produced by solving three equations simultaneously. And, in order to correct the local distortions induced by the geometry and terrain height, a distortion model has been incorporated in the procedure, which is a function of incidence angle and height at each pixel position. With this function, it is straightforward to calculate the pixel displacement due to distortions and then pixels are assigned to the output grid by re-sampling the displaced pixels. Most of the necessary information for the construction of polynomial model is available in the leader file and some can be derived from others. For validation, sample images of ERS-l PRI and Radarsat-l SGF have been processed by the proposed method and evaluated against ground truth acquired from 1:25,000 topography maps.

DIFFERENTIAL EQUATIONS RELATED TO FAMILY A

  • Li, Ping;Meng, Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.247-260
    • /
    • 2011
  • Let h be a meromorphic function with few poles and zeros. By Nevanlinna's value distribution theory we prove some new properties on the polynomials in h with the coefficients being small functions of h. We prove that if f is a meromorphic function and if $f^m$ is identically a polynomial in h with the constant term not vanish identically, then f is a polynomial in h. As an application, we are able to find the entire solutions of the differential equation of the type $$f^n+P(f)=be^{sz}+Q(e^z)$$, where P(f) is a differential polynomial in f of degree at most n-1, and Q($e^z$) is a polynomial in $e^z$ of degree k $\leqslant$ max {n-1, s(n-1)/n} with small functions of $e^z$ as its coefficients.

Solving a Matrix Polynomial by Conjugate Gradient Methods

  • Ko, Hyun-Ji;Kim, Hyun-Min
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.39-46
    • /
    • 2007
  • One of well known and much studied nonlinear matrix equations is the matrix polynomial which has the form G(X)=$A_0X^m+A_1X^{m-1}+{\cdots}+A_m$ where $A_0$, $A_1$, ${\cdots}$, $A_m$ and X are $n{\times}n$ real matrices. We show how the minimization methods can be used to solve the matrix polynomial G(X) and give some numerical experiments. We also compare Polak and Ribi$\acute{e}$re version and Fletcher and Reeves version of conjugate gradient method.

  • PDF

JACOBI SPECTRAL GALERKIN METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNEL

  • Yang, Yin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.247-262
    • /
    • 2016
  • We propose and analyze spectral and pseudo-spectral Jacobi-Galerkin approaches for weakly singular Volterra integral equations (VIEs). We provide a rigorous error analysis for spectral and pseudo-spectral Jacobi-Galerkin methods, which show that the errors of the approximate solution decay exponentially in $L^{\infty}$ norm and weighted $L^2$-norm. The numerical examples are given to illustrate the theoretical results.

HOW TO SOLVE AN INFINITE SIMULTANEOUS SYSTEM OF QUADRATIC EQUATIONS

  • Chung, Phil Ung;Lin, Ying Zhen
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.275-284
    • /
    • 2005
  • In the present paper we shall introduce several operators on the reproducing kernel spaces. And using them we shall find a solution of an infinite system of quadratic equations (1.1). In particular we shall convert problem for finding an approximate solution of infinite system of quadratic equations into problem for minimizing nonnegative biquadratic polynomial.

  • PDF

GENERALIZED INVERSES IN NUMERICAL SOLUTIONS OF CAUCHY SINGULAR INTEGRAL EQUATIONS

  • Kim, S.
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.875-888
    • /
    • 1998
  • The use of the zeros of Chebyshev polynomial of the first kind $T_{4n+4(x}$ ) and second kind $U_{2n+1}$ (x) for Gauss-Chebyshev quad-rature and collocation of singular integral equations of Cauchy type yields computationally accurate solutions over other combinations of $T_{n}$ /(x) and $U_{m}$(x) as in [8]. We show that the coefficient matrix of the overdetermined system has the generalized inverse. We estimate the residual error using the norm of the generalized inverse.e.

  • PDF