
J. KSIAM Vol.24, No.3, 243–291, 2020 http://dx.doi.org/10.12941/jksiam.2020.24.243

MULTI-BLOCK BOUNDARY VALUE METHODS FOR ORDINARY
DIFFERENTIAL AND DIFFERENTIAL ALGEBRAIC EQUATIONS

S. E. OGUNFEYITIMI1† AND M. N. O. IKHILE1

1ADVANCED RESEARCH LABORATORY, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BENIN, BENIN

CITY, NIGERIA

Email address: †seun.ogunfeyitimi@physci.uniben.edu, ikhile@uniben.edu

ABSTRACT. In this paper, multi-block generalized backward differentiation methods for nu-
merical solutions of ordinary differential and differential algebraic equations are introduced.
This class of linear multi-block methods is implemented as multi-block boundary value meth-
ods (MB2VMs). The root distribution of the stability polynomial of the new class of methods
are determined using the Wiener-Hopf factorization of a matrix polynomial for the purpose of
their correct implementation. Numerical tests, showing the potential of such methods for out-
put of multi-block of solutions of the ordinary differential equations in the new approach are
also reported herein. The methods which output multi-block of solutions of the ordinary dif-
ferential equations on application, are unlike the conventional linear multistep methods which
output a solution at a point or the conventional boundary value methods and multi-block meth-
ods which output only a block of solutions per step. The MB2VMs introduced herein is a novel
approach at developing very large scale integration methods (VLSIM) in the numerical solution
of differential equations.

1. INTRODUCTION

Consider the numerical solution of the stiff problem (see [7]),

y′ (t) = f (t, y(t)) , t ∈ (t0, T ) , y (t0) = y0, y(t) ∈ Rv,
f(t, y(t)) ∈ Rv, t ∈ R, v = 1, 2, ...,

(1.1)

in ordinary differential equations (ODEs) and the differential algebraic equations (DAEs)

y′ (t) = f (t, x(t), y(t)) , x (t0) = x0, y (t0) = y0,

0 = g (t, x(t), y(t)) .
(1.2)
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The ODEs in (1.1) and DAEs in (1.2) arise in the modelling of constrained mechanical systems,
biological system, circuits theory and chemical reaction kinetics [1, 2] etc. The initial value
problems (IVPs) in (1.1) and the DAEs in (1.2) can be solved numerically by the conventional
linear multistep methods of the form

k∑
j=0

αjyn+j = h
k∑
j=0

βjfn+j ; n = 0, 1, · · · ; k ≥ 1, (1.3)

due to relatively cheap implementation, but is limited by Dahlquist order stability barrier in [3].
In this regard, there have been several modification of the conventional LMM (1.3) restricted by
Dahlquist theorems to obtain different classes of methods (including hybrid methods and block
methods) with high order along with having A−stability properties. Example of such methods
can be found in [7, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15]. However, in Amodio et al [16], Brugnano
and Trigiante ([18, 19, 20] and references therein), provides a compelling approach, where
the continuous IVPs (1.1) and (1.2) is approximated by a means of discrete boundary value
problems (BVPs) using boundary value methods (BVMs) based on linear multistep formulas
in (1.3) of the form,

k2∑
j=−k1

αjyn+j = h

k2∑
j=−k1

βjfn+j ; n = 0, 1, · · · ; k1 + k2 = k,

y0, y1, · · ·, yk1−1︸ ︷︷ ︸
(a1)

yk1 , · · · , yN−k2︸ ︷︷ ︸
solution values to be generated by the BVM

yN−k2+1, · · · , yn+N︸ ︷︷ ︸
(a2)

(1.4)

This approach defines BVMs with (k1, k2)-boundary conditions, if the root distribution of the
stability polynomial of the main method in (1.4) is of the type (k1, 0, k2). Here k1 is the
number of roots lying inside the unit circle and k2 is the number of roots lying outside the
unit circle of the stability polynomial of the main methods in (1.4). Examples of such class of
methods includes; the generalized backward differentiation formulas (GBDFs) [19, 20],

k∑
j=0

αjyn+j = hfn+u; n = 0, 1, · · · ; k ≥ 1,

y0, y1, y2, · · · , yk1−1, yN−k2+1, · · · , yN (fixed).

(1.5)

This is a generalization of the conventional backward differentiation formulas in [1] with u(=
k1) defined as (see [19]),

u =

{
k+2
2 ; k even

k+1
2 ; k odd

The BVMs in (1.4) provides the numerical solution {yn+k1 , · · · , yn+N−k2} of the ODEs in
(1.1) and (1.2) given the boundary solutions in (1.5). The generalized Adams methods (GAMs),
extended trapeziodal rule of first (ETRs) and of second kinds (ETR2s), and top order methods
(TOMs) and a comprehensive theory for these classes of methods, along with the generalization
of zero-stability and A-stability of linear multistep methods (LMM) from the theory of initial



MB2VMS FOR ODEs AND DAEs 245

value methods (IVMs) in (1.3) to BVMs in (1.4) can be found in [19]. The generalized second
derivative linear multistep methods based on the methods of Enright [22] have been consid-
ered in [21]. The second derivative generalized extended backward differentiation formulas
(SDGEBDFs) is,

k∑
j=0

αjyn+j = h
2k−1∑
j=k

βjfn+j + h2f ′n+k, ∀k ≥ 1, n = 0, 1, 2, · · · ,

yn+1, · · · , yn+k−1︸ ︷︷ ︸
(a)

yn+k, · · · , yn+N−k+1︸ ︷︷ ︸
solution values to be generated by the SDBVM

yn+N−k+2, · · · , yn+N︸ ︷︷ ︸
(b)

for stiff problems of (1.1) have been proposed in [23] as the main formula. The solution out-
put (a) and (b) are to be provided or replaced by second derivative linear multistep formulas
(SDLMF) as equations at the points tn+1,· · · , tn+k−1 and tn+N−k+2, tn+N−k+3,· · · ,tn+N
respectively. Moreso, BVMs have been considered on Hamiltonian problems, Volterra integro-
differential problems, neutral pantograph equations and neutral multi-delay differential equa-
tions, differential algebraic equations in [24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37]. In fact,
the BVMs gives room to obtain solution of (1.1) and (1.2) globally, unlike the LMMs in (1.3)
which solution is obtained in a step-step fashion.

In this paper, the concept of the conventional BVMs in (1.4) is generalized through the use
of the linear multi-block methods in [11] to introduce for the first time, multi-block boundary
value methods (MB2VMs). The linear multi-block methods of [11] is

Yn+k =

k−1∑
j=0

AjYn+j + h

k∑
j=0

BjFn+j ; n = 0, 1, · · · , k ≥ 1 (1.6)

where

Aj =
[
a(j)u,v

]
u,v=1(1)s

, Yn+j = (yn+js, yn+js+1, yn+js+2, · · · , yn+js+s−1)T ,

Bj =
[
b(j)u,v

]
u,v=1(1)s

, Fn+j = (fn+js, fn+js+1, fn+js+2, · · · , fn+js+s−1)T

The multi-block methods in [11] have been introduced to take advantage of parallelism which
arise when Bk is diagonal or lower triangular. Fatunla [7] has extended the multi-block meth-
ods of [11] to second order IVPs in ODEs of (1.1). The new approach herein is to use the
multi-block formulas in (1.6) as MB2VMs for a multi-block of solution output of (1.1) and
(1.2). We provide herein a detailed theoretical approach on how it is achievable. We start by
introducing some results on the matrix difference equations having initial values and boundary
values, along with Wiener-Hopf matrix factorization of a matrix polynomial to determined the
root distribution of the stability polynomial of the arising multi-block boundary value method.
In [39] is a theory on parallelism of multi-block methods of [11] following [38]. An extension
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of [11] is the generalization to the multi-derivative µ-output multi-block method

Yn+k =
k−1∑
j=0

A
(q)
j (µ)Yn+j +

q∑
l=1

hl

 k∑
j=0

B
(l)
j (µ)F

(l−1)
n+j

 ;

k ≥ 1, q ≥ 1, Ak = Is,

(1.7)

given in [39]. Here

A
(q)
j (µ) =

[
a(q,j)u,v (µ)

]s
u,v=1

, Yn+j = (yn+µj+c1 , yn+µj+c2 , · · · , yn+µj+cs)
T ,

B
(l)
j (µ) =

[
b(l,j)u,v (µ)

]s
u,v=1

, c = (c1, c2, · · · , cs)T , µ = 1, 2, · · · ,

F
(l−1)
n+j =

{
Fn+j = (fn+µj+c1 , fn+µj+c2 , · · · , fn+µj+cs)

T ; l = 0(
f
(l−1)
n+µj+c1

, f
(l−1)
n+µj+c2

, · · · , f (l−1)n+µj+cs

)T
; l ≥ 1

(1.8)

as in [39]. The new formulation in (1.7) is significant over Chu and Hamilton [11] in (1.6)
because of its order and stability advantage for increasing block number k and derivative order
q, and among other advantages because of the introduction of the parameter µ. Here the multi-
block methods in (1.7) is a q-derivative, k-block, s-point, µ-output block method. The c in
(1.8) provides the benefit to introduce solution at hybrid points in the time variable t of (1.1) in
the blocks of (1.7), while the µ denotes the number of component overlaps in the consecutive
block solution of Yn+j and Yn+j−1 and function values F (l−1)

n+j and F (l−1)
n+j−1 respectively. If we

consider Yn+j and F (l−1)
n+j as sets of its components, then the overlap imply that,

Yn+j ∩ Yn+j−1 =

{ {
yn+µj+cs−2+µ, · · · , yn+µj+cs−1

}
; µ = 1(1)s− 1

φ(empty); µ ≥ s

Correspondingly,

F
(l−1)
n+j ∩ F

(l−1)
n+j−1 =

{ {
f
(l−1)
n+µj+cs−2+µ

, · · · , f (l−1)n+µj+cs−1

}
; µ = 1(1)s− 1

φ(empty); µ ≥ s, l = 1(1)q

and the number No·(·) of overlapping components in consecutive blocks is

No· (Yn+j ∩ Yn+j−1) = No·

(
F

(l−1)
n+j ∩ F

(l−1)
n+j−1

)
= s− µ; j = 1(1)k, l = 1(1)q.

The different value of µ corresponds to different block formalism, see [7, 9, 10]. If µ = s, then
(1.7) corresponds to non-overlapping in the block definition in (1.8) and for µ = 1(1)s−1 and
µ ≥ s + 1, the arising multi-block method in (1.7) is not amendable to multi-block boundary
value method implementation. For convenience, the discrete problem generated by a k-block
multi-derivative methods in (1.7) with k initial block conditions is written in matrix form by
introducing the (N − k + 1) s by (N − k + 1) s block matrices,
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A(q)(µ) =



A
(q)
k (µ)

...
. . .

A
(q)
0 (µ)

. . .
. . . . . .

A
(q)
0 (µ) · · · A

(q)
k (µ)


;

B(l)(µ) =



B
(l)
k (µ)

...
. . .

B
(l)
0 (µ)

. . .
. . . . . .

B
(l)
0 (µ) · · · B

(l)
k (µ)


; (1.9)

with l = 1(1)q and the block vectors are define as

Y = (Yn+k, Yn+k+1, · · · , Yn+N )T , F (l−1) =
(
F

(l−1)
n+k , F

(l−1)
n+k+1, · · · , F

(l−1)
n+N

)T
.

Then one has,

A(q)(µ)Y −
q∑

l=1

hlB(l)(µ)F (l−1) = −



∑k−1
j=0 A

(q)
j (µ)Yn+j −

∑q
l=1 h

l
(∑k−1

j=0 B
(l)
j (µ)F

(l−1)
n+j

)
...

A
(q)
0 (µ)Yn −

∑q
l=1 h

lB
(l)
0 (µ)F

(l−1)
n

O
...

O


(1.10)

where the block matrices A(q)(µ) and B(l)(µ), l = 1(1)q are lower triangular Toeplitz-block
matrices. These methods in (1.10) are multi-block q-derivative initial value methods , since
they generate discrete initial value problems of (1.1) and (1.2). However, we shall consider the
non-overlapping block of solutions in the MB2VMs to be introduced based on (1.7). Herein,
the one-block or block BVMs of [28, 37] is extended to the MB2VMs by employing the initial
value multi-block methods of [11]. The results in the following section then holds for the order
conditions of multi-block methods in (1.7).

1.1. The local truncation error and order conditions of multi-block methods in (1.7).

Following Ikhile and Muka [39], the local truncation error operator for the k-block s-point
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method, q ≥ 1 in (1.7) is given as,

L [Yn(tn);h] = Yn+k(tn)−
k−1∑
j=0

A
(q)
j (µ)Yn+j(tn)

−
q∑
l=1

hl

 k∑
j=0

B
(l)
j (µ)F (l−1) (Yn+j(tn))

 ; Ak = Is, µ ≥ 1

(1.11)

where
Yn+j(tn) = (y (tn+js) , y (tn+js+1) , y (tn+js+2) , · · · , y (tn+js+s−1))

T

F (l−1) (Yn+j(tn)) =

(
f (l−1) (tn+js, y (tn+js)) , f

(l−1) (tn+js+1, y (tn+js+1)) ,

f (l−1) (tn+js+2, y (tn+js+2)) , · · · , f (l−1) (tn+js+s−1, y (tn+js+s−1))

)T
The Taylor series about tn in (1.11) gives

L [Yn(tn);h] =

∞∑
j=0

Cjh
j

j!
Y (j)
n (tn); Y (j)

n (tn) =
(
y(j)(tn), y(j)(tn), · · · , y(j)(tn)

)T
︸ ︷︷ ︸

s

. (1.12)

The next result shows the order p of convergence of the linear multi-block methods (LMBM)
in (1.7).

Theorem 1.1. (cf:[39])
Let e = (1, · · · , 1)T . Then the vector coefficients {Ct}t=0 in (1.12) are given by

Ct =



e−
∑k−1

j=0 A
(q)
j (µ)e; t = 0

c−
∑k−1

j=0 A
(q)
j (µ)(c+ µje)−

∑k
j=0B

(1)
j (µ)e; t = 1

c2 −
∑k−1

j=0 A
(q)
j (µ)(c+ µje)2 − 2

∑k
j=0B

(1)
j (µ)(c+ µje)

−2
∑k

j=0B
(2)
j (µ)e; t = 2

...
ct −

∑k−1
j=0 A

(q)
j (µ)(c+ µje)t

−
∑q

l=1

[(∏l
j=1(t− j + 1)

)∑k
j=0B

(l)
j (µ)(c+ µje)t−1

]
; t = 3, 4, 5, · · ·

,

where c = (c1, c2, · · · , cs)T .

Vector powers are component-wise powers.

Proof. The proof is in Ikhile and Muka [39], but our interest is with when q = 1, s = µ,
c = (0, 1, 2, · · · , s− 1)T . �

The multi-block methods in (1.7) is of order p if Cj = 0, j = 1(1)p and Cp+1 6= 0. We also
give the following definitions:
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Definition 1.1. The method in (1.7) is said to be pre-consistent if C0 = 0.

Definition 1.2. The method in (1.7) is said to be consistent if it is pre-consistent and C1 = 0.

Thus, when

L[Yn+k(tn);h] =
Cp+1

(p+ 1)!
hp+1Y

(p+1)
n+k+1(tn) +O(hp+2)e; e = (1, · · · , 1)T ,

the multi-block methods in (1.7) is said to have a uniform order p. The interest is on MB2VMs
of uniform order of its constituent linear multistep formulas (LMFs). However, if the LMF
components of the multi-block methods in (1.7) are of various order {pj}j=1(1)s then the order
of the method in (1.7) is atleast p = min1≤j≤s{pj}. Here C̄p+1 =

Cp+1

(p+1)! is the local truncating
error (l.t.e) constant of the method in (1.7). The normalized local truncation error constant (EC)
is given as

MBMEp+1 =
Cp+1

(p+ 1)!
∑k

j=0B
(l)
j e

; l = 1.

The MBMEp+1 enables the comparison of the error constant of the method in (1.7) with that
LMMEp+1 of the LMM (1.3),

LMMEp+1 =

(
0, 0, · · · , 0, dp+1

(p+ 1)!σLMM (1)

)T
, σLMM (r) =

k∑
j=0

βjr
j ,

in one-block formalism where dp+1

(p+1)! is the error constant of the LMM in (1.3).

The paper is organized as follows. In Section 2, we discuss the matrix finite difference equa-
tion with initial value and boundary value conditions. Section 3 is devoted to the formulation of
multi-block boundary value methods, where the location of zeros and Wiener-Hopf factoriza-
tion of a matrix polynomial are fully discussed. In Section 4 is the construction of multi-block
generalized backward differentiation formulas (MBGBDFs). Section 5 is on the effect of us-
ing additional block methods in place of exact block of solution, on the stability of MB2VMs.
Numerical results are reported in Section 6 and the conclusion follows in Section 7.

2. THE SOLUTION OF MATRIX FINITE DIFFERENCE EQUATION

To understand the formulation of the multi-block boundary value methods to be proposed in
the later sections, it is necessary to present a theory on the solution of the multi-block finite
difference equation. Consider the k-block difference equation defined by

k∑
j=0

AjYn+j = 0; n = 0, 1, · · · , Y0, Y1, · · · , Yk−1︸ ︷︷ ︸
intial multi-block of solution values to be provided

, (2.1)

where

Aj =
[
a
(j)
i,l

]
i,l=1(1)s

, Yn+j = (yn+s·j , yn+s·j+1, · · · , yn+s·j+s−1)T , j = 0(1)k
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are known real constant matrices and block vectors to determine the block solution Yn+k. The
block vectors in {Y0, Y1, · · · , Yk−1} are the known block initial values to determine the block
solution Yk . The associated characteristic matrix polynomial to (2.1) is

ρ̂(R) =
k∑
j=0

AjR
j ; EjYn = Yn+j , Yn+j ∈ Rs. (2.2)

One can readily show that there are multi-block solution of (2.1) of the form Yn = Rnj G, n ≥ 0
provided that Rj is from a complete set of solvents for the characteristics matrix polynomial in
(2.2) and G is a vector of dimension compatible with Rj . Refer to [40] on how solvents can be
computed. Define the block vectors

A = (A0, · · · , Ak)T , Y ∗n = (Yn, · · · , Yn+k)T , D(R) = (Is, IsR, · · · , IsRk)T .

Thus (2.1) and (2.2) are transformed to

ATY ∗n = 0,

ρ̂(R) = ATD(R),

respectively. We are assuming all through the case where all the roots of det (ρ̂(R)) in (2.2)
are all simple. Consider the block vectors C and matrix η,

C = (Is, · · · , Is) ∈ Rs·k, η = diag(R1, R2, · · · , Rk), Rj ∈ Rs×s, (2.3)

respectively. The set {R1, R2, · · · , Rk} is a complete set of right solvents for the matrix poly-
nomial ρ̂(R) in (2.2) which means equivalently that {R1, R2, · · · , Rk} are the matrix roots of
the matrix polynomial ρ̂(R) in (2.2) that is,

ATD(Rj) = 0; j = 1(1)k.

The following theorem establishes the relation of the roots of the matrix polynomial (2.2) to the
solution of the multi-block finite difference matrix equations (2.1) comprising of initial value
conditions determined from the initial blocks of solution {Y0, Y1, · · · , Yk−1}.

Theorem 2.1. If all the matrix roots (solvents) R1, R2, · · · , Rk of the characteristic matrix
polynomial (2.2) are simple, then the generated multi-block solution Yn from (2.1) is given as

Yn = CηnG; n = 0, 1, · · · , (2.4)

where,

G = V −1(Y0, Y1, · · · , Yk−1)T ;

V =


Is Is · · · Is
R1 R2 · · · Rk
...

...
...

...
Rk−11 Rk−12 · · · Rk−1k

 ,

and G ∈ Ck·s is a block vector determined by the conditions defined by the initial multi-block
solutions Y0, Y1, · · · , Yk−1 (n = 0) of the multi-block difference Eq. (2.1).
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Proof. The discrete vector function (2.4) is a multi-block solution of (2.1) since

ATY ∗n = (A0, · · · , Ak)


Yn
Yn+1

...
Yn+k

 = AT


Cηn

Cηn+1

...
Cηn+k

G = AT


Cη0

Cη1

...
Cηk

 ηnG,

with C and η given in (2.3). Thus

AT


Is Is · · · Is
R1 R2 · · · Rk
...

...
...

...
Rk1 Rk2 · · · Rkk

 ηnG =
(
ATD(R1), A

TD(R2), · · · , ATD(Rk)
)
ηnG.

To show (2.4) is the general multi-block solution of (2.1), assume the initial block conditions

Y0 = Cη0G, Y1 = Cη1G, · · · , Yk−1 = Cηk−1G,

provided by the initial multi-block solution vectors Y0, Y1, · · · , Yk−1 (n = 0) from the past.
These transforms to

(Y0, Y1, · · · , Yk−1)T = V G,

where V is the Vandermonde block matrix (see V in (2.4)) with rowsCηj ; j = 0, 1, · · · , k−1.
The V is non-singular when Rj are distinct or equivalently independent and the eigenvectors
are independent so that the vector G is then uniquely determined by

G = V −1(Y0, Y1, · · · , Yk−1)T .
Thus, the general multi-block solution of the matrix difference equation (2.1) is given by

Yn = CηnV −1(Y0, Y1, · · · , Yk−1)T .
�

It is to be noted that the eigenvalues of the matrix roots or the solvents {R1, R2, · · · , Rk} of
(2.2) are the roots of det(ρ̂(r)). It is now clear, that for the convergence of the solution in (2.4)
of the matrix equation in (2.1), the eigenvalues of the solvents are required to be in the unit
circle, but those on the unit circle need be simple.

In what follows, we consider the solution of the boundary value matrix difference equation

k∑
j=0

AjYn+j = 0; n = 0, 1, · · · , k1 + k2 = k, N ≥ k,

Y0, · · · , Yk1−1︸ ︷︷ ︸
(a)

Yk1
, · · · , YN−k2︸ ︷︷ ︸

(c)

YN−k2+1, · · · , YN︸ ︷︷ ︸
(b)

(a): initial multi-block boundary condition (given)
(b): final multi-block boundary condition (given)

(2.5)
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The initial multi-block and final multi-block solution values in (a) and (b) respectively are
boundary values of the solution to be provided, while in (c) is the multi-block of solution
values to be generated from the matrix recurrence relation in (2.5). The MB2VMs in (2.5) are
a novel approach at developing very large scale integration methods (VLSIM) in the numerical
solution of differential equations.

Theorem 2.2. Suppose that the characteristic matrix polynomial in (2.2) (with k = k1 + k2)
is such that, the eigenvalues of {R1, R2, · · · , Rk1} are strictly in the unit circle, while the
eigenvalues of {Rk1+1, Rk1+2, · · · , Rk} are strictly outside the unit circle. Then the generated
multi-block solution Yn+k from (2.1) is given as

Yn = CηnG; n = 0, 1, · · · ,
G = V −1(Y0, Y1, · · · , Yk1−1, YN−k2+1, · · · , YN )T ,

(2.6)

where G ∈ Ck·s is a block vector determined by the conditions defined by the initial multi-
block solutions Y0, Y1, · · · , Yk1−1 and the final multi-block solutions YN−k2+1, · · · , YN of the
of the multi-block difference equation in (2.1)

Proof. The proof is similar to theorem 2.1, since (2.2) is now a multi-block boundary value
problem from (2.1), where one assign the initial block values Y0, Y1, · · · , Yk1−1 (n = 0) and
final block values ,YN−k2+1, · · · , YN (n = 0) for N ≥ k1 and k1 + k2 = k. One has,

Y0 = Cη0G, Y1 = Cη1G, · · · , Yk1−1 = Cηk1−1G,

YN−k2+1 = CηN−k2+1G, · · · , YN = CηNG.
(2.7)

Then, the corresponding matrix system of equations to Vandermonde in (2.4) is given as

V (k1,k2)G = (Y0, Y1, · · · , Yk1−1, YN−k2+1, · · · , YN )T ,

where

V (k1,k2) =



Is Is Is · · · Is
R1 · · · Rk1 Rk1+1 · · · Rk
...

...
...

...
Rk1−11 · · · Rk1−1k1

Rk1−1k1+1 · · · Rk1−1k

RN−k2+1
1 · · · RN−k2+1

k1
RN−k2+1
k1+1 · · · RN−k2+1

k
...

...
...

...
RN1 · · · RNk1 RNk1+1 · · · RNk


. (2.8)

The block matrix is the mosaic Vandermode block matrix. If V (k1,k2) is non-singular then the
multi-block boundary value problem (2.1) with the initial and final block conditions in (2.7)
will have a unique multi-block solution. Similarly one has

Yn = CDn
(
V (k1,k2)

)−1
(Y0, Y1, · · · , Yk1−1, YN−k2+1, · · · , YN )T , n = 0, 1, 2, · · · .
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The above theorem establishes the general form of the solution of the boundary valued finite
difference equation from (2.1).

Theorem 2.3. Suppose that k1 is the number of the initial blocks of conditions andR1, R1, · · · , Rk
be the complete set of (right) solvents of (2.2) and let

Rj+1 = Q−1j+1Lj+1Qj+1; j = 0(1)k − 1

are the diagonalizable matrix roots of the characteristic matrix polynomial (2.2) associated
with the matrix difference equation (2.1). Here

Lj+1 = diag(rs·j+1, rs·j+2, · · · , rs·j+s); j = 0(1)k − 1,

such that

‖ Lj+1 ‖∞= max
j
{| rs·j+1 |, | rs·j+2 |, · · · , | rs·j+s |}; j = 0(1)k − 1, s ≥ 2, (2.9)

where r1, r2, · · · , rs·k are also the distinct characteristic roots of the polynomial det (ρ̂(r))
with the assumption that these eigenvalues are arranged in absolute magnitude as

| r1 |<| r2 |< · · · <| rs−1 |<| rs |<| rs+1 |< · · · <| r2s−1 |<| r2s |< · · · <| rs·k1 |
<| rs·k1+1 |< · · · <| rs·k1+s·k2−1 |<| rs(k1+k2) |; k1 + k2 = k,

(2.10)

Let
‖ Lk1 ‖∞≤ 1 <‖ Lk1+1 ‖∞, (2.11)

then, there exist an integer δ0 for all N ≥ δ0, such that the matrix (2.8) is non-singular.

Proof. The proof follows the approach of theorem 2.2.2 in chapter two, page 19 of Brugnano
and Trigiante [19] for matrix difference equation (2.1). By (2.10) or (2.11), the solventsRj+1;
j = 0(1)k − 1 are diagonalisable and

Rj+1 = Q−1j+1Lj+1Qj+1; j = 0(1)k − 1,

for some invertible matrices Qj+1. By defining the following block matrices

V
(u)
1 =


Is Is · · · Is
R1 R2 · · · Rk1
...

...
...

...
Ru−11 Ru−12 · · · Ru−1k1

 , η1 =

 R1

. . .
Rk1



V
(u)
2 =


Is Is · · · Is

Rk1+1 Rk1+2 · · · Rk
...

...
...

...
Ru−1k1+1 Ru−1k−1+2 · · · Ru−1k

 , η2 =

 Rk1+1

. . .
Rk

 ,
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then

V (k1,k2) =

(
V

(k1)
1 V

(k1)
2

V
(k2)
1 ηN1 V

(k2)
2 ηN2

)
=

(
V

(k1)
1 O

V
(k2)
1 ηN1 σn

)(
Ik1

(
V

(k1)
2

)−1
O Ik1

)
,

where

σn = V
(k2)
2 ηN2 − V

(k2)
1 ηN1

(
V

(k1)
1

)−1
V k1
2 .

Thus V (k1,k2) is non singular if and only if σn is non singular. Now, because of (2.10) and
(2.11)

ηN1 = Ik1O
(
‖ Lk1 ‖N∞

)
, η−N2 = Ik2O

(
‖ Lk2 ‖−N∞

)
,

and

σn =

(
V

(k2)
2 − V (k2)

1 ηN1

(
V

(k1)
1

)−1
V

(k1)
2 η−N2

)
ηN2

=
(
V

(k2)
2 +O

(
‖ L−1k1+1Lk1 ‖

N
∞

))
ηN2 .

Since V (k2)
2 is also non-singular and ‖ L−1k1+1Lk1 ‖∞< 1 is bounded there exist δ0 > 0 such

that σn is non-singular for all N ≥ δ0. The minimum value of vector column of δ0 is observed
to be of the order p = s · k ( s is the dimension of the coefficient matrices of the method in
(2.1)). �

The above theorem establishes the existence of the solution of the boundary value finite differ-
ence equation from (2.2) by showing the invertibility of the mosaic block Vandermonde matrix
V (k1,k2).

Theorem 2.4. Suppose that the matrix roots of the characteristics matrix polynomial in (2.2)
associated with (2.1) are such that,

‖ Lk1−1 ‖∞<‖ Lk1 ‖∞<‖ Lk1+1 ‖∞, ‖ Lk1 ‖∞≤ 1.

Then the multi-block solution of the boundary value finite difference equation associated with
(2.1) having k1 number of initial block conditions and k2 number of final block conditions in
(2.7) has a solution for n andN −n sufficiently large. In fact, the multi-block solution of (2.1)
subject to (2.7) behaves asymptotically as

Yn = Rnk1

(
α+O (ln1 ) +O

(
lN−n2 +

)
+O

(
l−N3

))
+O

(
lN−n3

)
; n = 0, 1, · · · , (2.12)
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where the vector α depends on Y0, Y1, · · · , Yk1−1 (n = 0) and

l1 =‖ L−1k1 Lk1−1 ‖∞< 1, k1 + k2 = k

l3 = min {| rs·k1+1 |, | rs·k1+2 |, · · · , | rs·k1+s |} > 1,

l2 =‖ L−1k1+1Lk1 ‖∞< 1, l4 =‖ Lk1−1 ‖∞< 1,

Lj+1 = diag (rs·j+1, rs·j+2, · · · , rs·j+s) , j = 0(1)k − 1

‖ Lk1 ‖∞= max{| rs(k1−1)+1 |, | rs(k1−1)+2 |, · · · , | rs·k1 |} ≤ 1;

| rs·k1 |= 1, 1 <| rs·k1+r |, r = 1(1)s

. (2.13)

Proof. This is obtained by extending the augment in the proof of theorem 2.6.1 in chapter two,
page 39 in [19]. The (2.1) is a more general case than that considered in [19], page 39. Thus
from (2.4), write that

Yn = CIη
n
IGI +Gk1R

n
k1 + CF η

n
FGF ; n = 0, 1, 2, · · · , (2.14)

where

CI = (Is, Is, · · · , Is) , CF = (Is, Is, · · · , Is) , ηI = diag (R1, R2, · · · , Rk1−1, Rk1
) ,

ηF = diag (Rk1+1, Rk2+1, · · · , Rk) , Yn = (ys·n, ys·n+1, · · · , ys·n+s−1)
T
,

YI = (ys·i, ys·i+1, · · · , ys·i+s−1)
T
, YF = (ys·f , ys·f+1, · · · , ys·f+s−1)

T
,

Li+1 = diag (rs·i, rs·i+1, · · · , rs·i+s−1) , i = 0(1)k1 − 1, f = 0(1)k − k1 s ≥ 2.

The entries of the block vectorsGI andGF symbolises the initial and final multi-block bound-
ary conditions of the boundary value difference equations in (2.1). In a well defined compact
form for (2.14), Is CI CF

Vk1−1Rk1 Hk1−1ηI Qk1−1ηF
Vk2R

N
k2

Hk2η
N
I Qk2η

N
F

 Gk1
GI
GF

 =

 Y0
YI
YF

 ,

where

Hj =


Is Is · · · Is
R1 R2 · · · Rk1−1
...

...
...

Rj−11 Rj−12 · · · Rj−1k1−1

 , Qj =


Is Is · · · Is

Rk1+1 Rk1+2 · · · Rk
...

...
...

Rj−1k1+1 Rj−1k1+2 · · · Rj−1k

 ,

with Vj =
(
Is, Rk1 , · · · , R

j−1
k1

)T
. Set,

Z =

 Is CI CF
Vk1−1Rk1 Hk1−1ηI Qk1−1ηF
Vk2R

N
k1

Hk2η
N
I Qk2η

N
F

 .
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Next is show that the inverse of Z exist through the asymptotic sense. Decomposing Z into the
form,

Z =

 Is O O
Vk1−1Rk1 ICI

O
Vk2R

N
k1

w ICF

 Is CI CF
O P1 P2

O O ψ

 ,

where
P1 = Hk1−1ηI − Vk1−1Rk1CI , P2 = Qk1−1ηF − Vk1−1Rk1CF ,

w =
(
Hk2η

N
I − Vk2RNk1CI

)
P−11 = −RNk1

(
Vk2CI +O

(
‖ L−1k1 Lk1−1 ‖

N
∞

))
P−11

= O
(
‖ Lk1 ‖N∞

)
, ‖ Lk1 ‖∞< 1 ,

ψ = Qk2η
N
F − Vk2RNk1CF − wP2 =

(
Qk2 +O

(
‖ L−1k1+1Lk1 ‖

N
∞

))
ηNF .

From the above,

Z−1 =

 Is + CIP
−1
1 Vk1Rk1r

Tψ−1θ rTψ−1w − CIP−11 −rTψ−1
P−11

(
P2ψ

−1θ − Vk1−1Rk1
)

P−11

(
IIP2ψ

−1w
)

P−11 P2ψ
−1

ψ−1θ −ψ−1w ψ−1

 ,

where
rT = CI − CIP−11 P2, θ = Vk2R

N
k1 − Vk1−1Rkw = O

(
‖ Lk1 ‖N∞

)
.

Then one obtains

Gk1 =
(
Is + CIP

−1
1 Vk1−1Rk1 +O

(
(l2)

N
))

Y0

−
(
CIP

−1
1 +O

(
(l2)

N
))

YI +O
(

(l3)
−N
)

= α+O
(

(l2)
N
)

+O
(

(l3)
−N
)
,

GI =
(
−P−11 Vk1−1Rk +O

(
(l2)

N
))

Y0

−
(
II +O

(
(l2)

N
))

YI +O
(

(l3)
−N
)

= ϑ+O
(

(l2)
N
)

+O
(

(l3)
−N
)
,

and

GF = η−NF

(
Q−1k2 +O

(
(l2)

N
))(

YF +O
(

(l4)
N
))

= η−NF

(
φ+O

(
(l2)

N
)

+O
(

(l4)
N
))

.

where lq; q = 1(1)4 as defined in (2.13). The block vectors ϑ = P−11 (YI − Vk1−1Rk1Y0) and
φ = Q−1k2 YF are constants independent of N , and

α = Y0 + CIP
−1
1 (Y0Rk1Vk1−1 − YI) ,

depends only on the initial block conditions in (2.7) . Therefore,

Yn = Rnk1

(
α+O ((l1)

n) +O
(

(l2)
N−n

)
+O

(
(l3)
−N
))

+O
(

(l3)
N−n

)
. (2.15)
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Here Rk1 is the generating matrix root (solvent) of the associated characteristics matrix poly-
nomial of (2.5) . �

The solution (2.6) as restructured in (2.14) and the analysis of its convergence of the boundary
value matrix difference equations (2.5) is by no means trivial, as can be seen in the proofs of the
theorems 2.1– 2.4. For the convergence of the solution in (2.6) as restructured in (2.14) and with
the asymptotic solution given in (2.15) of the boundary value matrix difference equations (2.5),
the eigenvalues of the k1 number of the solvents and k2 number of the solvents are required to
be in the unit circle and outside the unit circle respectively. However, those eigenvalues on the
unit circle need be simple. It is now established through theorem 2.1– 2.4 that the matrix finite
difference equation (2.1) subject to the initial block conditions and final block conditions in
(2.7) has bounded block vector solutions (2.6) with respect to the conditions of the theorems.
It is on the bases of this that a MB2VMs can be formulated using (1.7) and (2.7) in the sense
of the classic BVMs in (1.4).

3. MULTI-BLOCK BOUNDARY VALUE METHODS (MB2VMs)

Consider the linear multi-block formulas (LMBFs) of [11] in (1.6) of the form

k∑
j=0

AjYn+j = h

k∑
j=0

BjFn+j ; n = 0, 1, · · · : k ≥ 1. (3.1)

obtained from (1.7) when q = 1, µ = s, where

Aj =
[
a
(j)
i,l

]
i,l=1(1)s

, Bj =
[
b
(j)
i,l

]
i,l=1(1)s

,

Yn+j = (yn+s·j , yn+s·j+1, · · · , yn+s·j+s−1)T , j = 0(1)k

Fn+j = (fn+s·j , fn+s·j+1, · · · , fn+s·j+s−1)T .

The {Yn+j}j=0(1)k are the multi-block of non-overlapping solution values and {Fn+j}j=0(1)k

denotes the corresponding multi-block of non-overlapping function values of (3.1). The for-
mula (3.1) is a k-block, s-point block formula. Here, the block shift operator E is defined as
EjYn = Yn+j see (2.2). Define the first and second characteristics matrix polynomial of (3.1)
as

ρ̂(R) =
k∑
j=0

AjR
j , σ̂(R) =

k∑
j=0

BjR
j , (3.2)

respectively. The first and second characteristic stability polynomial of (3.1) are

ρ(r) = det (ρ̂(r)) = det

 k∑
j=0

Ajr
j

 , σ(r) = det

 k∑
j=0

Bjr
j

 . (3.3)
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The stability matrix polynomial of (3.1) on application on the scalar test equation y′ = λy,
Re(λ) < 0 is ∏̂

(R, z) = ρ̂(R)− zσ̂(R); z = λh (3.4)

The corresponding stability polynomial associated with (3.1) is thus,∏
(r, z) = det

(∏̂
(r, z)

)
= det (ρ̂(r)− zσ̂(r)) ;

r = ejθ, 0 < θ ≤ 2π, z = λh, Re(z) < 0

. (3.5)

Implementing (3.1) as a MB2VMs, we shall have
k2∑

j=−k1

Aj+k1Yn+j = h

k2∑
j=−k1

Bj+k1Fn+j ; n = 0(1)(N − k), k > 1,

Y0, · · · , Yk1−1︸ ︷︷ ︸
(a)

Yk1 , · · · , YN−k2︸ ︷︷ ︸
multi-block of solution values to be generated by the MB2VMs

YN−k2+1, · · · , YN︸ ︷︷ ︸
(b)

,

(3.6)

as the main block formula while the initial multi-block formulas (a) and final multi-block
formulas (b) in (3.6) are to be provided or replaced by multi-block multistep formula in (3.1).
The coefficients {Aj , Bj} are determined by imposing a O

(
h2s·k+1

)
truncation error. By

this the constituent linear multistep formulas (LMFs) of the linear block multistep formulas
(LBMFs) of (3.6) can have maximum order p = 2s ·k. This, no doubt is an order advantage of
MB2VMs over the conventional BVMs in (1.4) . Here q1 = s · k1 is the number of roots lying
inside the unit circle and q2 = s · k2 is the number of roots lying outside the unit circle of the
stability polynomial in (3.5) of the main methods in (3.6). The discrete problem generated by
a MB2VMs (3.6) with (k1, k2)-block boundary conditions is written in the compact form

AY − hBF = −



∑k1−1
j=0 (AjYn+j − hBjFn+j)

...
A0Yn+k1−1 − hB0Fn+k1−1

O
...

O
AkYn+N−k2+1 − hBkFn+N−k2+1

...∑k2
j=1Ak1+jYn+N−k2+j − hβk1+jfn+N−k2+j


, (3.7)

where
Y = (Yn+k1 , · · · , Yn+N−k2)T , F = (Fn+k1 , · · · , Fn+N−k2)T , (3.8)

as the multi-block solution and function vectors of (3.7). The A and B are the multi-block
Toeplitz matrices obtained from the main formula (3.6) without the initial multi-block formulas
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and final multi-block formulas. The arising MB2VMs in (3.6) is thusAk1,k2-stable. The multi-
block Toeplitz matrix A is of the form

A =



Ak1
Ak1+1 · · · Ak O O · · · · · · O

...
. . .

...

A1

. . .
...

A0

...

O
. . .

. . .
...

O
. . .

. . . Ak

...
. . .

. . .
...

...
. . .

. . . Ak1+1

O · · · · · · O O A0 A1 · · · Ak1


(N−k)s×(N−k)s

; k1 + k2 = k, (3.9)

and B is of a similar form, but with the B′js instead of the A′js. The coefficient block matrices
are banded Toeplitz-block matrices having lower band k1 (equal to the number of block initial
conditions) and upper band k2 (equal to the number of block final conditions). It is trivial
that the class of MB2VMs (3.6) contains the conventional multi-block methods as introduced
by Chu and Hamilton [11] for the case k1 = k and k2 = 0 as in (1.9). The implementation
of (3.6) is amenable to parallelism on a larger scale than the block method of (1.6) and the
conventional BVMs in (1.4). An advantage of the MB2VMs in (3.6) or equivalently in (3.7)
is that it outputs the multi-block of solution {Yn+k1 , · · · , Yn+N−k2}, unlike the conventional
linear multistep methods in (1.3) which output a solution yn+k at a point or the conventional
boundary value methods in (1.4) which output the block of solution {yn+k1 , · · · , yn+N−k2}
and multi-block methods [11] in (1.6) which output a block of solution Yn+k per step. The
continuous problem (1.1) provides only the initial value y0, whereas the k1 extra initial blocks
Y0, · · · , Yk1−1 (n = 0), of solution values in (3.7) are to be given by the initial block formula,

k∑
j=0

A
(i)
j Yj = h

k∑
j=0

B
(i)
j Fj ; n = 0, i = 0(1)k1 − 1, (3.10)

and the k2 extra final blocks YN , · · · , YN+k2−1 (n = 0) of solution values are similarly given
by the final block formula,

k∑
j=0

A
(i)
N−k+jYN−k+j = h

k∑
j=0

B
(i)
N−k+jFN−k+j ; n = 0, i = (N − k2 + 1)(1)N. (3.11)

Moreover, it is important for the composite matrix scheme, (3.6), (3.10) and (3.11) which is a
MB2VMs to have uniform order p or atleast p = min1≤j≤s{pj} where, pj ; j = 1(1)s are the
order of the respective constituent LMFs. Thus the composition is written as

ANY − hBNF = O, O = (O, · · · ,O)T . (3.12)
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Here the multi-block of solutions and functions are given as

Y = (Yn, · · · , Yn+k1−1, Yn+k, · · · , Yn+N−k2 , Yn+N−k2+1, · · · , Yn+N )T ,

F = (Fn, · · · , Fn+k1−1, Fn+k, · · · , Fn+N−k2 , Fn+N−k2+1, · · · , Fn+N )T ,
(3.13)

and AN =
[
a | ĀN

]
∈ RNs×(N+1)s is

AN =



A
(0)
0 A

(0)
1 · · · A

(0)
k

A
(1)
0 A

(1)
1 · · · A

(1)
k

...
...

. . .
...

A
(k1−1)
0 A

(k1−1)
1 · · · A

(k1−1)
k

A0 A1 · · · Ak
A0 A1 · · · Ak

. . . . . . · · · . . .
A0 A1 · · · Ak

A
(N−k2+1)
0 A

(N−k2+1)
1 · · · A

(N−k2+1)
k

...
... · · ·

...
A

(N)
0 A

(N)
1 · · · A

(N)
k



, (3.14)

and BN =
[
b | B̄N

]
∈ RNs×(N+1)s is of similar form, but with B′js instead of A′js. The

matrix AN − zBN , has a multi-block quasi-Toeplitz structure [41, 42, 43] as a result of the
additional multi-block formulas from (3.10) and (3.11). The (3.12) is equivalent to the one-
block method

ĀN Ȳn+1 + Ā0Ȳn = h
(
B̄N F̄n+1 + B̄0F̄n

)
, n = 0, 1, · · · , (3.15)

in higher dimensional block with multi-block of solution output. Here the mult-block of solu-
tion and function values are given as

Ȳn+1 = (Yn+1, · · · , Yn+k1−1, Yn+k, · · · , Yn+N−k2 , Yn+N−k2+1, · · · , Yn+N )
T
,

F̄n+1 = (Fn+1, · · · , Fn+k1−1, Fn+k, · · · , Fn+N−k2
, Fn+N−k2+1, · · · , Fn+N )

T
,

(3.16)

Ā0 =
[
O(N−1)s ×Ns | a

]
=



A
(0)
0

A
(1)
0
...

A
(k1−1)
0
A0

O(N−1)s ×Ns O
...

O


, (3.17)
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and

B̄0 =
[
O(N−1)s ×Ns | b

]
=



B
(0)
0

B
(1)
0
...

B
(k1−1)
0
B0

O(N−1)s ×Ns O
...

O


. (3.18)

The MB2VMs in (3.15) can be implemented through the use of Newton-Raphson method.
Thus the multi-block solution Ȳn+1 = Ȳ

[q]
n+1, q > 0 in (3.16) is iteratively obtained from,

Ȳ
[i+1]
n+1 = Ȳ

[i]
n+1 − (ĀN − hB̄N

∂Mn+1

∂Yn+1
)−1(ĀN Ȳ

[i]
n+1 + Ā0Ȳn

−hB̄0F̄n − hB̄N F̄ [i]
n+1); i = 0(1)q q > 1,

(3.19)

where

∂M(Yn+1)

∂Yn+1
=
∂ (fn+1, · · · , fn+N ·s)
∂ (yn+1, · · · , yn+N ·s)

=



∂fn+1

∂yn+1

∂fn+1

∂yn+2
· · · ∂fn+1

∂yn+N·s

∂fn+2

∂yn+1

δfn+2

∂yn+2
· · · ∂fn+2

∂yn+N·s

...
∂fn+s

∂yn+1

∂fn+s

∂yn+2
· · · ∂fn+N·s

∂yn+N·s


. (3.20)

M(Yn+1) = ĀN Ȳ
[i]
n+1 + Ā0Ȳn − hB̄0F̄n − hB̄N F̄ [i]

n+1 = 0 (3.21)

A modified Newton-Raphson method which uses a fixed Jacobian J = ∂M
∂Y from the ODEs in

(1.1) and (1.2) when feasible can also be considered. The method in (3.15) are implemented
with minimum block size using the Newton-Raphson method in (3.19), see Section 5. Next,
is the consideration of the root distribution of the stability polynomial in (3.5) in order to
determine the stability of the MB2VMs in (3.6).

3.1. Location of zeros of a polynomial and Wiener-Hopf Factorization of a matrix poly-
nomial.

This section considers location of zeros or root distribution of a polynomial arising from the
determinant of a Wiener-Hopf factorization of a matrix polynomial in (2.2).
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3.1.1. Location of zeros of a polynomial.

The stability of the MB2VMs in (3.7)for the solution of ODEs in (1.1) and (1.2) rely on the
distribution of the roots of the stability polynomial (3.5) with respect to the unit disk. We shall
discuss schur criterion for a matrix polynomial in general for the case of initial and boundary
value methods in (1.6) and (3.6) respectively. The characteristic polynomial we seek its root
distribution is in general arising from first equation in (3.3) and (3.5). Thus, we defined the
following polynomial

ρ(r) = det (ρ̂(r)) =

q∑
j=0

ajr
j , (3.22)

here q = s · k is the degree of the polynomial ρ(r) and k is the degree of matrix polynomial
ρ̂(R) in (3.2). Suppose

d1 = {r ∈ C :| r |< 1}, d2 = {r ∈ C :| r |= 1}, d3 = {r ∈ C :| r |> 1},

and let q1, q2, q3, q be four non-negative integers such that

q1 + q2 + q3 = s · k = q.

We make the following definitions;

Definition 3.1.

(a) The polynomial ρ(r) in (3.22) is said to be of root distribution type (q1, q2, q3) if
has q1 number of zeros inside d1, q2 number of zeros on d2 and q3 number of zeros
inside d3.

(a∗) The matrix polynomial ρ̂(R) in (2.2) is said to be of block root (solvent) distri-
bution type (k1, k2, k3) if equivalently, the associated matrix polynomial ρ(r) =
det(ρ̂(r)) is of root distribution type (q1, q2, q3) when qi = s · ki ; i = 1(1)3.

(b) The matrix polynomial ρ̂(R) in (2.2) is called Schur matrix polynomial if the
polynomial ρ(r) in (3.22) is of the type (q, 0, 0), that is q1 = q, q2 = q3 = 0.

(c) The matrix polynomial ρ̂(R) in (2.2) is called Von-Neumann matrix polynomial if
the polynomial ρ(r) in (3.22) is of the type (q1, q − q1), 0) with simple zeros on
the unit circle.

(d) The matrix polynomial ρ̂(R) in (2.2) is said to be self inversive, if the polynomial
ρ(r) in (3.22) and

ρ∗(r) =

q∑
j=0

ājr
−j = rqρ̄

(
r−1
)

; q = s · k,

have the same set of roots, is the reverse polynomial of (3.22) and āj is the con-
jugate of aj . Since ρ(r) in definition (3.1a) is of the type (q1, q2, q3), then then
ρ∗(r) is equivalent to the type (q3, q2, q1).
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However, the polynomial ρ(r) of type (q1, 0, q−q1)) will be used in the subsequent sections for
characterizing the stability of the multi-block boundary value methods in (3.6). An equivalent
of definition (3.1a∗) is that the matrix polynomial ρ̂(R) in (2.2) of solvent distribution type
(k1, k2, k3) implies that k1 number of the solvents have eigenvalues inside the unit circle, k2
number of the solvents have eigenvalues on the unit circle and k3 number of the solvents have
eigenvalues outside the unit circle.

Theorem 3.1.
A matrix polynomial ρ̂(R) in (2.2) is self inversive if and only if the polynomial ρ(r) in (3.22)
satisfy,

ρ∗(0)ρ(r) = ρ(0)ρ∗(r); r ∈ C.

Proof. The proof follows from definition 3.1d and [19], page 53. �

Theorem 3.2.
Suppose that | ρ(0) |6=| ρ∗(0) |. Then ρ̂(R) in (2.2) is of type (k1, k2, k3) matrix polynomial if
and only if the polynomial ρ(r) of degree q = s · k in (3.22) satisfy the following conditions:

(a) ρ1(r) is of the type (s · k1, s · k2, s · k3), when | ρ∗(0) |>| ρ(0) |
(b) ρ1(r) is of the type (s · k3, s · k2, s · k1), when | ρ∗(0) |<| ρ(0) |,

where

ρ1(r) =
ρ∗(0)ρ(r)− ρ(0)ρ∗(r)

r
; | ρ∗(0) |6=| ρ(0) |,

is of degree s · k − 1.

Proof. This follows from [19], page 54. �

Example 3.1: Consider a matrix polynomial

ρ̂(R) =

(
1 0
0 1

)
R4−

(
1 0
0 1

)
R3+

(
1 0
0 1

)
R2+

(
1 0
0 1

)
R+

(
1 0
0 1

)
. (3.23)

This polynomial is self inversive matrix polynomial if

ρ(r) = det (ρ̂(r)) =

(
1 0
0 1

)
r4 −

(
1 0
0 1

)
r3 +

(
1 0
0 1

)
r2 +

(
1 0
0 1

)
r

+

(
1 0
0 1

)
= r8 − 2r7 + 3r6 + r4 − 3r2 + 2r + 1,

is a self inversive polynomial. Let (s · k1, s · k2, s · k3) be the unknown type of ρ(r). Through
iterative application of Theorem 3.2, we obtain the polynomial ρ8(r) of the type (1, 0, 1). It
implies that the matrix polynomial ρ̂(R) in (3.23) is of the block root or solvent distribution
type (2, 0, 2) and ρ(r) is equivalently of root distribution type (4, 0, 4), see definition 3.1d).

Theorem 3.3. The matrix polynomial ρ̂(R) in (2.2) is a Schur matrix polynomial if the asso-
ciated polynomial ρ(r) in (3.22) satisfy the following conditions, | ρ∗(0) |>| ρ(0) | and ρ1(r)
is a Schur polynomial.
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Proof. Following [19], page 55, suppose that the matrix polynomial (2.2) is a Schur matrix
polynomial then the polynomial ρ(r) in (3.22) of degree q = s · k is of the type (s · k, 0, 0)
and thus,| ρ∗(0) |>| ρ(0) |. From theorem 3.2, it shows that ρ1(r) must be of type (s · k −
1, 0, 0). �

The application of definition (3.1a, b) is considered in the next example.

Example 3.2: Consider the matrix polynomial

ρ̂(R, z) =

(
1
2 −2
−1

3
3
2

)
+

(
3
2 0
−3 11

6

)
R− z

(
1 0
0 1

)
R, z ∈ C. (3.24)

The associated polynomial ρ(r) in (3.22) is given as

ρ(r) = det (ρ̂(r, 0)) =
1

12
− 17

6
r +

11

4
r2, (3.25)

with | ρ∗(0) |>| ρ(0) | and ρ1(r) = 68
9 (r − 1) which is a Von Neumann polynomial. It

follows that the matrix polynomial in (3.24) is a Von Neumann matrix polynomial. Here
ρ(r) = (r − 1)

(
33
12r −

1
12

)
in (3.25).

Similarly, the polynomial ρ(r) in (3.24) is given as

ρ(r, z) = det (ρ̂(r, z)) =
1

12
− 17

6
r +

11

4
r2 − 2rz − 10

3
r2z + r2z2,

ρ(r, 6) =
1

12
− 89

6
r +

75

4
r2, z = 6. (3.26)

Here | ρ∗(0) |>| ρ(0) | and ρ1(r) = −2492
9 + 3164

9 r is a Shur polynomial. Thus the ma-
trix polynomial in (3.24) is a Schur matrix polynomial since roots are r1 = 0.00565845 and
r2 = 0.785453 in (3.26).

For this reason, the generalization of multi-block IVMs in definition (3.1) to multi-block BVMs
is given in the following definition.

Definition 3.2. A matrix polynomial ρ̂(R) of degree k = k1 + k2 in (3.22) is an Sk1,k2-matrix
polynomial, if the roots {rj}qj=1 of the polynomial ρ(r) are such that

| r1 |≤ · · · ≤| rq1 |< 1 <| rq1+1 |≤ · · · | rq |, q1 + q2 = q = s · k.

Definition 3.3. A matrix polynomial ρ̂(R) of degree k = k1 + k2 in (2.2) is an Nk1,k2-matrix
polynomial, if the roots {rj}qj=1 of the polynomial ρ(r) in (3.22) are such that

| r1 |≤ · · · ≤| rq1 |≤ 1 <| rq1+1 |≤ · · · | rq |, q1 + q2 = q = s · k.

Definition 3.4. The MB2VM (3.7) with (k1, k2)- block boundary conditions where k = k1+k2
is ;

(a) Ok1,k2-stable if the corresponding first characteristics matrix polynomial ρ̂(R) in (3.2)
is a Nk1,k2- matrix polynomial with q1 = s · k1 and q2 = s · k2.
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(b) (k1, k2)- absolutely stable for a given z ∈ C, if the corresponding matrix polynomial∏̂
(R, z) in (3.4) is a Sk1,k2- matrix polynomial.

(c) The region Dk1,k2 = {z ∈ C :
∏̂

(R, z) in (3.4) is a Sk1,k2- matrix polynomial } is
said to be the region of (k1, k2)-absolute stability.

(d) Ak1,k2-stable if C̄ ⊆ Dk1,k2 .

The Ak1,k2-stability define the stability of the MB2VMs in terms of the block number k which
is the degree of the stability matrix polynomial (3.4). It can as well be referred to as Ak1,k2-
block stability.

3.1.2. The Wiener-Hopf factorization of a matrix polynomial.

Following [44, 45], recall the matrix polynomial

ρ̂(R) =

k∑
j=0

AjR
j = A0 +A1R+ · · ·+AkR

k

from (2.2) which may be withAj ∈ Cs×s such thatA0 6= O andAk 6= O , where det(ρ̂(R)) 6=
0. To obtain a Wiener-Hopf factorization of this matrix polynomial ρ̂(R), we seek the root
distribution of det(ρ̂(R)) in the factorization

ρ̂(R) = F (R)U(R); det(ρ̂(R)) = det(F (R))det(U(R)) (3.27)

relative to the interior and exterior of the unit circle | r |= 1, where

F (R) = F0 + · · ·+ Fk1R
k1 and U(R) = U0 + U1R+ · · ·+ Uk2R

k2 .

such that the roots of {rj}s·kj=1 are of the roots of det(ρ̂(r)) and

det
(
r−k1F (r)

)
: | rj |> 1 : j = 1(1)s · k2

det (U(r)) : | rj |≤ 1 : j = 1(1)s · k1

}
s · k = s (k1 + k2) . (3.28)

respectively. In this sense, we assume the matrix polynomial F (R) is monic by fixing Fk1 =
Ik1 , since Fk1 is required to be invertible. Thus the matrix polynomial ρ̂(R) = F (R)U(R) is
said to be canonical right factorization of ρ̂(R) , if

F (R) = F0 + · · ·+ Fk1−1R
k1−1 + Ik1R

k1 , U(R) = U0 + U1R+ · · ·+ Uk2R
k2 ,

and the roots are distributed relative to the interior and exterior of the unit circle as below
det (F (r)) 6= 0 : | rj |≤ 1 j = 1(1)s · k1
det (U(r)) 6= 0 : | rj |> 1 j = 1(1)s · k2

}
s · k = s (k1 + k2) (3.29)

respectively. From (3.28) to (3.29), a right canonical factorization is assumed to exist, thus

G(R) = R−k1 ρ̂(R) =

k2∑
j=−k1

AjR
j , k1 + k2 = k, (3.30)
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has a matrix factorization,

G(R) = G−(R)
∧
G+(R),

∧
= diag (Rg1 , · · · , Rgs) , (3.31)

with

G−(R) = R−k1F (R) = I + Fk1−1R
−1 + · · ·+ F0R

−k1 , (3.32)

and

G+(R) = U0 + U1R+ · · ·+ Uk2R
k2 . (3.33)

The matrix G−(R) and G+(R) in (3.32) and (3.33) respectively are said to be invertible for |
rj |> 1 and | rj(z) |< 1. The matrix function in (3.31) is called the Wiener-Hopf factorization
of ρ̂(R) or as a right Wiener-Hopf Factorization. From (3.30) , we thus have,

G(R) = G−(R)diag (Rg1 , · · · , Rgs)G+(R), (3.34)

with g1, · · · , gs ∈ R, then G(R) be is said to invertible for | rj(z) |≥ 1 and | rj(z) |≤ 1 with
respect to G− and G+ respectively, see [44]. In (3.32) and (3.33), g1, · · · , gs are the right
partial indices of G(R) and are unique up to their order. The factorization in (3.34) is said to
be canonical, if all partial indices are such that g1 = · · · = gs = 0. Thus,

G(R) = G−(R)G+(R). (3.35)

The matrix polynomial factor representation in (3.35) provides a block upper and lower (UL)
triangular factorization see [46],

G = G−G+,

of the block Toeplitz matrix A in (3.9), that is

G = A =



Ak1 Ak1+1 · · · Ak O O · · · · · · O
...

. . .
...

A1

. . .
...

A0

...

O
. . .

. . .
...

O
. . .

. . . Ak

...
. . .

. . .
...

...
. . .

. . . Ak1+1

O · · · · · · O O A0 A1 · · · Ak1


(N−k)s×(N−k)s

; k1 + k2 = k,
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G− =



Fk1 Fk1+1 · · · Is O O · · · · · · O

O
. . .

...
...

. . .
...

O
...

O
. . .

. . . O

O
. . .

. . . Is
...

. . .
. . .

...
...

. . .
. . . Fk1+1

O · · · · · · O O O · · · O Fk1


(N−k2)s×(N−k2)s

,

G+ =



Uk1 0 · · · O O O · · · · · · O
...

. . .
...

U1

. . .
...

U0

...

O
. . .

. . .
...

O
. . .

. . . O
...

. . .
. . .

...
...

. . .
. . . O

O · · · · · · O O U0 U1 · · · Uk1


(N−k1)s×(N−k1)s

.

The Wiener-Hopf matrix factorization in (3.35), if it exist suggest the MB2VMs in (3.6) which
stability polynomial in (3.5) has s · k1, number of roots in the unit circle and s · k2 number
outside it. This is equivalent to the band structure of G+ and G− respectively for all z ∈ C
preferably in the left half of the complex plane that include the stable region of the MB2VMs
in (3.6). The stable region of methods have been obtained herein by boundary locus plots of
the corresponding stability polynomial

∏
(r, z) in (3.5), see Fig. 1 and others. In general,

for the existence of the Wiener-Hopf matrix factorization in (3.35) of the matrix polynomial
ρ̂(R) in (3.2) which has the associated stability polynomial det(ρ̂(r)) in (3.3) having the root
distribution (q1, 0, q2), then the dimension of the coefficient matrices of the MB2VM in (3.6)
must be a multiplicative factor of q1 and q2. This apply to polynomial in (3.4) and (3.5) for a
fixed z ∈ C. The existence of such Wiener-Hopf factorization gives rise to a stable multi-block
boundary value method and its band structure.

Remark 3.1. The root distribution of the stability polynomial in (3.5) gives the appropriate
(k1, k2)-block boundary conditions of the respective method from (3.6). The correct imple-
mentation is obtained when the first characteristics polynomial ρ(r) in (3.3) has the same root
distribution with that of (3.5) for all values of z in the stability region in definition (3.4).
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Consider now the Newton-Raphson approach by Albrecht and Martin [44] to obtain the ma-
trix factors F (R) and U(R) when they exist. Recall again the matrix polynomial ρ̂(R) =∑k

j=0AjR
j = A0 +A1R+ · · ·+AkR

k and assume ρ̂(R) has a right canonical factorization
(3.35) with k1 ≥ k2. The case k2 ≥ k1 can be worked out similarly. The equation in (3.27)
can be expressed as the non- linear system of the form(

ψ0

ψ1

)
=

(
φ0
φ1

)
U, (3.36)

in search of the unknown matrices U0, · · · , Uk2 and F0, · · · , Fk1−1, with

φ0 =


F0 O · · · O
F1 F0 O · · ·
...

. . . O
...

Fk1−1 · · · · · · F0 O

 , ψ1 =

 Ak1
...
Ak

 , U =

 U0
...
Uk2

 ,

ψ0 =

 A0
...

Ak1−1

 , φ1 =


I Fk1−1 · · · F0 O

I Fk1−1 · · · F0

. . .
I

 .

System (3.36) is equivalent to the two equations ψ0 = φ0U and ψ1 = φ1U . Thus

E(F ) = ψ0 − φ0 (φ1)
−1 ψ1 = O (3.37)

To illustrate this with an example consider the matrix polynomial,

ρ̂(R) = A2R
2 +A1R+A0 − zB1R; z = λh, (3.38)

where the matrix coefficients are given as

A0 =

(
1
12 −2

3
1
10 −3

4

)
;A1 =

(
0 2

3
1
6 −1

2

)
;A2 =

(
− 1

12 0
0 − 1

60

)
;B1 =

(
1 0
1 0

)
.

which correspond to a MB2VMs that is A1,1-stability. Here the case of z = 0 in (3.38) gives
rise to the first characteristics matrix polynomial ρ̂2(R) = F (R)U(R) , which

 A0

A1

A2

 =



1
12

−2
3

1
10

−3
4

0 2
3

1
6

−1
2−1

12 0
0 −1

60


=



f01 f02 0 0
f03 f04 0 0

1 0 f01 f02
0 1 f03 f04
0 0 1 0
0 0 0 1




u01 u02
u03 u04
u11 u12
u13 u14

 . (3.39)

Using Netwon-Raphson approach as in [44] to resolve this non-linear equation in (3.37), we
have
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f01 = 0.18873316096819862, f02 = −34.05633419515901,

f03 = −2.02831719316661, f04 = −28.858414034166945,

u01 = −0.01572776341401655, u02 = 0.09906109674734993,

u03 = −0.00235976609721752, u04 = 0.01902643276388418,

u11 = −0.08333333333333334, u12 = 0, u13 = 0, u14 = −0.016666666666666666.

(3.40)

By this,

F (R) =

(
0.1887331 −34.0563341
−2.0283171 −28.8584140

)
+

(
1 0
0 1

)
R, (3.41)

where the roots of the det (F (r)) gives two real outside the unit circle;
r1 = −2.04642 and r2 = 31.0936. From (3.40),

U(R) =

(
−0.015727 0.0990610
−0.0023597 0.0190264

)
+

(
−0.0833333 0

0 −0.0166666

)
R. (3.42)

Similarly, the roots of the det (U(r)) gives two real roots inside the unit circle;
r3 = −0.0471472 and r4 = 1. From (3.38), arise the 2-block s-point formula

A2Yn+2 +A1Yn+1 +A0Yn = hB1Fn+1; n = 0, 1, · · · . (3.43)

which is found to beO1,1-stable andA1,1-stable of order p = 4. The result is the 2-block BVM

AY − hBF =



−A0Yn + hB0Fn
O
...

O
O

−A2Yn+N + hB2Fn+N


, (3.44)

defined by the band structured block Toeplitz matrix

A =



A1 A2 O O · · · O
A0 A1 A2 O · · · O
O A0 A1 A2 · · · O

. . .
O · · · O A0 A1 A2

O · · · O O A0 A1


; B =



O B2 O O · · · O
O O B2 O · · · O
O O O B2 · · · O

. . .
O O O · · · O B2

O O O · · · O O


,

(3.45)

from (3.38). The matrix A has a Wiener-Hopf factorization G−G+ given by (3.35). The
remark 3.1 holds with respect to (3.44), see (3.39) to (3.42). The MB2VMs in (3.6) is appro-
priately implemented if its stability nature is correctly determined through the Wiener-Hopf
factorization of its first characteristics stability matrix polynomial ρ̂(r) and its stability matrix
polynomial

∏̂
(R, z) to have the same root distribution. The following definition emphasizes

the essence of this.
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Definition 3.5. A consistent MB2VMs in (3.6) is correctly used with z ∈ C−, where its stability
matrix polynomial

∏̂
(R, z) in form of (3.4) is of the root distribution type (k1, 0, k2) when k1

number of block conditions are imposed at the initial block of points and k2 number of block
conditions imposed at the end of the interval of interest of the integration.

By definition 3.5, the polynomial det(ρ̂(r)) must be of the same root distribution as det(
∏̂

(r, z)),
z ∈C−. More so, for the MB2VMs in (3.6) with (k1, k2)−block-boundary conditions, the cor-
responding family of block matrices T (k)

N = A − zB from (3.7) are well conditioned when
z ∈ Dk1,k2 . That is, the condition numbers of the block matrix T (k)

N are uniformly bounded
with respect to increasing N and k, see Table 2.

4. CONSTUCTION OF THE MULTI-BLOCK GENERALIZED BACKWARD DIFFERENTIATION
FORMULAS (MBGBDFS)

A particular family of MB2VMs in (3.6) to be proposed, is the multi-block GBDFs (MBGBDFs),
k∑
j=0

AjYn+j = hBiF (Yn+i) ; i = 1(1)k, n = 0, 1, · · · ; k = k1 + k2,

Y0, · · · , Yi−1︸ ︷︷ ︸
(a)

Yi, · · · , YN−k+i︸ ︷︷ ︸
multi-block solution values to be generated by the MBGBDFs

YN−k+i+1, · · · , YN︸ ︷︷ ︸
(b)

(4.1)

as the main formula, while the block solutions input (a) and (b) are to be provided or replaced
by multi-block multistep formulas (MBMFs) as equations. The i = k in (4.1) is the conven-
tional initial value methods of multi-block backward differentiation formulas (MB2DFs). For
example, the one-block 2-point BDF is A-stable, 2-block 2-point BDF is A(63o)-stable, while
the case of 3-block 2-point BDF is unstable. In general, the A-stability property of MB2DFs
is limited as the block number k and the dimension s increases. The BVMs overcome the
Dahlquist order-stability barrier [1, 3, 15] which has been extended to LMMs that employs
second derivative or higher order derivatives in the Daniel-Moore order-stability barrier con-
jecture [1]. However, this setback in the stability of the initial value multi-block methods (1.6)
from [11] is corrected through its implementation as MB2VMs as will be seen in what are to
follow. Using (4.1) as MB2VMs with i 6= k, we gain the freedom of choosing the appropri-
ate values of i that provides methods having the best stability properties for all block number
k ≥ 2 and block size s ≥ 2. The stability polynomial of (4.1) is∏

(r, z) = det (ρ̂(r)− zσ̂(r) = det
(
Ajr

j − zBiri
)
, i = 0(1)k

=

q∑
j=0

ajr
j − z

q1∑
i=1

bir
i, q = s · k, q1 = s · k1,

(4.2)

with

ρ (r) =

q∑
j=0

ajr
j , σ (r) =

q1∑
i=1

bir
i,
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as the first and second stability polynomials associated with (4.1) respectively. Note that for a
stable method, stability region is the exterior of the simple closed curve defined by the boundary
locus of the stability polynomial in (3.5) or (4.2) in all the stability plots of the methods, see
Fig. 1, 2, and others. The MBGBDFs in (4.1) has k + 1 blocks which allow the method to
attain maximum order p = q(= s · k). However, Bi can be choosen as Is, the identity matrix
or

Bi =



0 · · · 0 1 0 · · · 0

... · · ·
... 1

... · · ·
...

0 · · · 0 1 0 · · · 0


. (4.3)

TheBi = I is preferred when solving the DAEs problems in (1.2), in order to avoid singularity
in the Jacobian of the method. The Bi in (4.3) is suitable for solving stiff problems (see,
problem 1 in (6.5)).

Theorem 4.1. Suppose the MBGBDF in (4.1) is Ak1,k2-stable. Then k1 = i and k2 = k − i.

Proof. The stability polynomial of an Ak1,k2-stable MBGBDF in (4.1) is given in (4.2) which
does not change its type as z varies in C−, since the boundary plot belong to C \ C− and as
z → ∞. The stability polynomial

∏
(r, z) in (4.2) approaches the polynomial

∑q1
i=0 bir

i if
z →∞ which has matrix polynomial of the type (i, 0,m− i). The s · i = q1 is the number of
zeros inside the unit circle and s(m− i) = q− q1 is the number of roots outside the unit circle
of the stability polynomial in (4.2) of the method in (4.1) �

Here i = u is choosen as

u =

{
k+2m

2 ; k even −k
2 ≤ m ≤

k
2

k+1+2m
2 ; k odd −k+1

2 ≤ m ≤ k−1
2

(4.4)

The method in (4.1) are Au,k−u-stable thus implemented with (u, k− u)-block boundary con-
ditions. The following set of initial additional block formulas

k∑
j=0

A
(i)
j Yj = hB

(i)
i Fi; n = 0, i = 0, · · · , u− 1, (4.5)

and final additional block formulas,
k∑
j=0

A
(i)
j YN−k+j = hB

(i)
i Fi; n = 0, i = N −m+ 1, · · · , N, (4.6)

are needed to implement a MBGBDFs in (4.1). The coefficients of (4.5) and (4.6) are uniquely
determined to attain the same order as the MB2VMs in (4.1). For simplicity, we fix s = 2,
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with Bu =a Bu in (4.1) given as

aBu =



(
1 0
1 0

)
u is even, a = 1(

0 1
0 1

)
u is odd, a = 2(

1 0
0 1

)
for any u, a = 3

, (4.7)

to derive a family of methods in (4.1) for an increasing block number k. The method in (4.1)
has the stability polynomial (4.2) of type (s · k1, 0, s · k2) and possesses Ok1,k2-stability and
Ak1,k2-stability properties. Here the third option a = 3 in (4.7) is preferred for aBu to avoid
singularity in the blending of the method (4.1) during implementation (see, [47]). The first
characteristics stability polynomial in (4.2) is of the type (s · k1 − 1, 1, s · k2). The boundary
loci are shown in Fig. 1a for m odd and Fig. 1b for m even. The MBGBDF in (4.1) have been
derived for various dimension of block size of solution Yn+j and block number k. The Fig. 1
has the stability plots of MBGBDF in (4.1) of order p = 2k, s = 2, k = 2(1)15 for k odd
or even with aid of MATHEMATICA version 11.1 [51]. See Fig. 2 for MBGBDF in (4.1) of
order p = 3k, s = 3, k = 2(1)10 for k odd or even, and Fig. 3 and 4 for block dimension
s = 2(1)7 and s = 8(1)10 respectively. The Fig. 8 contains the boundary loci of MBGBDF in
(4.1) of order p = 2k, s = 2, k = 2(2)16.

Let Yn be block discrete solution obtained by using the k-block GBDF (4.1) on the test equa-
tion y′ = λy. Suppose the roots associated with the corresponding stability polynomial (4.2),
for Re(z) < 0 is such that,

‖ L1 ‖∞≤ · · · ≤‖ Lk1 ‖∞≤ 1 <‖ Lk1+1 ‖∞≤ · · · ≤‖ Lk ‖∞,
from theorem (2.3). By theorem (2.4), it shows that Rk1 is the solvent block vector generating
root and then

Yn ≈ Rnk1Y0.
Also from theorem (4.1), it follows as z → −∞ then that Rnk1 → 0 as n increases. Therefore
the multi-block GBDFs is Lu,k−u-stable for diagonal matrix aBu. To fix idea, using MATH-
EMATICA version 11.1 [50, 51], the matrix coefficients of the fourth order 2-block, s-point
MBGBDFs,

A2Yn+2 +A1Yn+1 +A0Yn = hB1Fn+1; n = 0(1)(N − 2), B1 = 3Bu, (4.8)

in (4.1) as main method have been derived with s · k1 = q1, s · k2 = q2 and s = 2, where
m = 0 in (4.4) and

A0 =

(
1

200 − 1
15−1

75
3
40

)
;A1 =

(
0 1

15−1
5

2
15

)
;A2 =

(
− 1

120 0
0 − 1

200

)
;

B1 =

(
1
10 0
0 1

10

)
; C̄5 =

(
− 1

300
− 1

100

)
.

(4.9)
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In general, the entries of the matrix coefficients of the MB2VMs presented herein are normal-
ized to avoid round off amplification. It is A1,1-stable and can be used with one initial block
formulas in (4.5) having the matrix coefficients,

A
(0)
0 =

(
0 0
− 1

40 − 1
12

)
;A

(0)
1 =

(
0 0
3
20 − 1

20

)
;A

(0)
2 =

(
0 0
− 1

120 0

)
;

B
(0)
0 =

(
0 0
0 1

10

)
; C̄5 =

(
0
− 1

300

)
,

(4.10)

and one final additional block formulas in (4.6) with matrix coefficient,

A
(N)
0 =

(
1
40 − 2

15
2
25 −3

8

)
;A

(N)
1 =

(
3
10 −2

5
2
3

−1
2

)
;A

(N)
2 =

(
5
24 0
0 77

600

)
;

B
(N)
2 =

(
1
10 0
0 1

10

)
; C̄5 =

(
− 1

50
− 1

10

)
.

(4.11)

In one-block form in (3.15), then (4.8) is,

ĀN =



A
(0)
1 A

(0)
2 O · · · · · · O

A0 A1 A2 O O
O A0 A1 A2 O O
...

. . . . . . . . . . . . O
... O A0 A1 A2 O
... O O A0 A1 A2

O · · · O O A
(N)
0 A

(N)
1 A

(N)
2


Ns×Ns

,

B̄N =



O O O · · · · · · O
O B1 O O O O
O O B1 O O O
...

. . . . . . . . . . . . O
... O O B1 O

O · · · O O O B
(N)
2


Ns×Ns

, B̄0 =



| B
(0)
0

| O
O(N−1)s×N ·s | O

| O

|
...

| O


,

and

Ā0 =



| A
(0)
0

| O
O(N−1)s×N ·s | O

| O

|
...

| O


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For k = 3, one obtains the matrix coefficients of a sixth order 3-block, 2-point GBDF in (4.1)
with s · k1 = 4, s · k2 = 2,s = 2 , B2 = 1

10Is , m = 0 as

A0 =

(
1

600 − 2
150

− 1
1050

1
120

)
;A1 =

(
1
20 − 4

30
− 1

30
5
60

)
;A2 =

(
7

120
2
50

−1
6

47
600

)
;

A3 =

(
− 1

300 0
1
30 − 1

420

)
;B2 =

(
1
10 0
0 1

10

)
;

(
C̄7

C̄8

)
=

(
− 1

1050
− 1

1680

)
.

(4.12)

It is A2,1-stable, which can be used with two additional initial block equations in (4.5) defined
by the coefficient matrices

A
(0)
0 =

(
0 0
− 1

60 − 77
600

)
;A

(0)
1 =

(
0 0
1
4 −1

6

)
;A

(0)
2 =

(
0 0
1
12 − 1

40

)
;

A
(0)
3 =

(
0 0
1

300 0

)
;B

(0)
0 =

(
0 0
0 1

10

)
;

(
C̄7

C̄7

)
=

(
0
1

420

)
,

(4.13)

and

A
(1)
0 =

(
1

300 − 1
25

− 1
1050

1
100

)
;A

(1)
1 =

(
− 7

120
2
15

− 3
50 − 1

40

)
;A

(1)
2 =

(
− 1

20
1
75

1
10 − 3

100

)
;

A
(1)
3 =

(
− 1

600 0
1

150 − 1
1400

)
;B

(1)
2 =

(
1
10 0
0 1

10

)
;

(
C̄7

C̄8

)
=

(
− 1

1050
1

560

)
.

(4.14)

The one final additional block equation in (4.6) with the matrix coefficients,

A
(N)
0 =

(
1
60 − 3

25
− 1

70
7
60

)
;A

(N)
1 =

(
3
8 −2

3
−21

50
7
8

)
;A

(N)
2 =

(
3
4 −3

5
−7

6
21
20

)
;

A
(N)
3 =

(
49
200 0
− 7

10
363
1400

)
;B

(N)
3 =

(
1
10 0
0 1

10

)
;

(
C̄7

C̄8

)
=

(
− 1

70
− 1

80

)
.

(4.15)

Similarly, for k = 3, one obtains the matrix coefficients of a sixth order multi-block GBDF in
(4.1) with s · k1 = 4, s · k2 = 2, s = 2, Bi = 2Bu, u = 2, m = 0

A0 =

(
− 1

300
1
40

− 1
75

1
24

)
;A1 =

(
− 1

12
1
6

− 2
15

1
4

)
;A2 =

(
−1

4
77
600

−1
3

107
600

)
;

A3 =

(
1
60 0
0 1

420

)
;B2 =

(
0 1

10
0 1

10

)
;

(
C̄7

C̄7

)
=

(
1

420
1

210

)
.

(4.16)

Since it isA2,1-stable, it can be implemented with the same coefficient matrices given in (4.13),
(4.14) and (4.15) respectively or having additional methods of the same order with (4.16) as
given below; two additional initial block equations in (4.5) with matrix coefficient given from
(4.13) and

A
(1)
0 =

(
1

300 − 1
25

− 1
525

1
60

)
;A

(1)
1 =

(
− 7

120
2
15

− 2
25

1
120

)
;A

(1)
2 =

(
− 1

20
1
75

1
15 − 1

100

)
;

A
(1)
3 =

(
− 1

600 0
0 1

420

)
;B

(1)
2 =

(
1
10 0
0 1

10

)
;

(
C̄7

C̄7

)
=

(
− 1

1050
1

1050

)
,
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and one final additional block equation from (4.6), with the coefficient matrices,

A
(N)
0 =

(
1
60 − 3

25
3
35 − 7

12

)
;A

(N)
1 =

(
3
8 −2

3
42
25 −21

8

)
;A

(N)
2 =

(
3
4 −3

5
7
3 −21

20

)
;

A
(N)
3 =

(
49
200 0
0 223

1400

)
;B

(N)
3 =

(
1
10 0
0 1

10

)
;

(
C̄7

C̄7

)
=

(
− 1

70
− 1

10

)
.

Also for k = 3, u = 1, m = −1 in (4.1), the resultant method is not a boundary value method
since the root distribution of the corresponding stability polyomials ρ(r) and

∏
(r, z) are not

the same. In this circumstance such method can not be implemented as a multi-block boundary
value method. In general when the stability polynomial ρ(r) from (3.3) and

∏
(r, z) in (3.5)

do not have the same root distribution, the arising method defies the correct use notion in defi-
nition 3.5 and therefore cannot be used as a MB2VM.

Another approach of implementing the method in (4.1) without need for initial and final addi-
tional block equations in (4.5, 4.6) is to transform (4.1) into a multi-block GBDFs of the form
in (3.7). The case k = 2 is the O1,1, A1,1-stable methods of (4.8) given in (3.43) (3.44) and
(3.45) with Y = (Yn+1, Yn+2, · · · , Yn+N−1)T , F = (Fn+1, Fn+2, · · · , Fn+N−1)T . In
similar fashion, further examples of the k-block s-point block boundary value method in (4.1)
with m = 0 , Bi = Is, s = 3 are listed below. The matrix coefficients for 2-block 3-point
block boundary value method in (4.1) with m = 0, B1 = 1

10Is are given by,

A0 =

 − 1
600

3
200 − 3

40
3

1400 − 1
60

3
50

− 3
400

3
56 −1

6

 ;A1 =

 0 3
40 − 3

200
− 3

20
3
40

3
100

3
10 −3

8
39
200

 ;

A2 =

 1
600 0 0
0 − 1

2100 0
0 0 1

1680

 ;B1 =

 1
10 0 0
0 1

10 0
0 0 1

10

 ; C̄7 =

 1
1400
− 1

700
1

140

 ;

For 3-block 3-point block boundary value method in (4.1) with m = 0, B2 = 1
10Is , one

obtains the matrix coefficients

A0 =

 1
5040 − 3

1400
3

280
− 1

8400
1

720 − 3
400

1
13200 − 1

1050
1

180

 ;A1 =

 − 1
30

3
40 − 3

20
1
40 − 7

120
21
200

− 1
50

1
20 − 7

75

 ;

A2 =

 37
600

3
70 − 3

560
− 7

40
319
4200 − 3

80
7
50 −1

5
743
8400

 ;A3 =

 1
2520 0 0
− 1

240
1

3600 0
1
30 − 1

300
1

4950

 ;

B2 =

 1
10 0 0
0 1

10 0
0 0 1

10

 ;

 C̄10

C̄11

C̄12

 =

 − 1
8400
1

13200
− 1

19800

 ;
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The matrix coefficients for 4-block 3-point block boundary value method in (4.1) with m = 0,
B2 = 1

10Is are,

A0 =

 − 1
55440 − 1

3850
1

560
− 1

50050
1

3600 − 1
550

1
30800 − 2

4550
1

360

 ;A1 =

 − 5
630

15
560 − 6

70
3

400 − 2
90

21
400

− 6
550

3
100 −28

50

 ;

A3 =

 5
630 − 1

560
1

3850
− 1

80
1

450 − 1
4400

2
50 − 1

200
2

4950

 ;A4 =

 − 1
55440 0 0
0 1

514800 0
0 0 − 1

1801800

 ;

A2 =

 0 6
70 − 15

560
− 6

50
12
350 − 3

50
21
200 −12

70
201
2800

 ;B2 =

 1
10 0 0
0 1

10 0
0 0 1

10

 ; C̄13 =

 − 1
120120
1

85800
− 1

42900

 .

Other MB2VMs from (3.6) can be derived similarly.The Fig. 9 has the plot of absolute error
constant against block number for the MGBDF in (4.1) in comparison with SDGEBDF [23],
SDGBDF [48] and GBDF [19]. The new multi-block boundary value methods MBGBDF in
(4.1) have the advantage of smaller absolute error constant than the cited methods as can being
seen in Fig. 9 with an enlargement in Fig. 10 for block dimension of s = 2, 3.

5. EFFECTS OF ADDITIONAL MULTIBLOCK METHODS ON THE STABILITY OF MB2VMS
AND MINIMUM BLOCK SIZE IMPLEMENTATION OF THE MB2VMS

From the results in the section 3, we conclude that the main formula (3.6) which is Ak1,k2-
stable is implemented with (k1, k2)-block boundary conditions without need for initial and
final block formulas. However providing the exact k1 block of initial values (a) and k2 block
final values (b) in the implementation of (3.6) on (1.1) and (1.2) may be demanding, especially
with a high block step number m of the main method in (3.6). The way, is to replace them by
an equivalent number of block equations formed by LBMFs as in (3.10) and (3.11) preferably
of the same order as in the example of (4.8) to (4.11). The introduction of the initial and final
block formulas into a MB2VMs implementation in (3.15) affects its stability. This stability
is reduced to A(α)−stability when these values are instead replaced by initial block and final
block methods. We now shall study the role of this additional block methods related to the
whole composite scheme in (3.15), which make such a choice appealing. To study this effect
of the initial methods (3.10) and the final methods (3.11) on the whole composite schemes of
the MB2VMs (3.15), we obtain the following discrete problem(

ĀN − zB̄N
)
Ȳn+1 = −(a− zb)Yn, (5.1)

from (3.15) (see,(3.13), (3.16), (3.17) and (3.18)). The method in (5.1) will have a multi-
block solution for all Re(z) < 0, if the eigenvalues of the matrix pencil

MP (µ) =
(
ĀN − µB̄N

)
, (5.2)
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Figure 1: Boundary loci of the MBGBDFs (4.1) of order p = 2k, s = 2, (A) k = 3(2)15
m = 0 and (B) k = 2(2)14, m = 1. The exterior of the closed curves is the stable region of
the method.
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Figure 2: Boundary loci of the MBGBDFs (4.1) of order p = 3k, s = 3, m = 0, (A)
k = 2(2)10 and (B) k = 3(2)9. The exterior of the closed curves is the stable region of the
method.

have positive real part for all values of the block size N · s . In fact, a multi-block method in
(3.15) is said to be pre-stable if the spectrum of the corresponding block matrix pencil MP (µ)
in (5.2) is contained in C+. Note that,
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Figure 3: Boundary loci of the MBGBDFs (4.1) of order p = 4s, k = 2,m = 0, (A) s = 2(2)6
and (B) s = 3(2)7. The exterior of the closed curves is the stable region of the method.
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Figure 4: Boundary loci of the MBGBDFs (4.1) of order p = 4s, k = 2, m = 0, (A) s = 8 ,
(B) s = 9 and (C) s = 10. The exterior of the closed curves is the stable region of the method.

−(ĀN )−1a =

 Is
...
Is

 ∈ RN ·s.
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However, the introduction of extra row at the top and bottom respectively, when implementing
the methods in (3.15) as seen from (3.14) allows some eigenvalues of the matrix pencil in
(5.2) to enter C−. Thus, the method becomes Ak1,k2(α)-stable see [23]. For example, this is
the case with MBGBDF in (4.1) when k ≥ 5, when the additional initial (4.5) and final block
formulas (4.6) are used during the implementation of the composite methods in (3.15) see Fig.
5, 6 and 7. The method (3.15) can be safely used for all the block number of k in (3.6) for any
particular problem provided that µ = z = hλ is not closed to imaginary axis. Nevertheless, to
have all the eigenvalues of (5.2) for the case of MBGBDF (4.1) for k ≥ 5 in C−, we adopt the
suggestion of Brugnano and Trigiante [19] to consider taking the output solution inside each
block Y in (3.8) not equally spaced. For example, let

T0, T1, · · · , Tr, Tr+1, · · · , TN−r−1, TN−r, · · · , TN−1, TN ;

Tj = (tj·s, tjs+1, tj·s+2, · · · , tj·s+s−1)T ; j = 0(1)N
(5.3)

be the grid of block points inside the multi-block vector Y and let the following block output
points

T0, Tr, · · · , TN−r, TN ,
be equally spaced with steps size h. The remaining points in (5.3) are computed from

Ti = Ti−1 + V r+1−ih, i = 1, · · · , r, (5.4)

TN−i = TN+i−1 − V r+1−iIsh, i = 1, · · · , r, (5.5)

where
V = diag(ν(i−1)s+1, ν(i−1)s+2, · · · , ν(i−1)s+s)T ; i = 1(1)r.

For simplicity, we set V = νIs, that means fixing ν = νj = νi, where i, j = 1(1)s. Then
when r = 1, ν = 1; when r = 2, ν = −1

2 +
√
5
2 and when r = 3, ν = 0.543689. Thus, for the

case r ≥ 4, ν is determined from
r∑
i=i

νi − 1 = 0; 0 < ν ≤ 1.

This suggest the introduction of hybrid solution in the block of solution vectors Yn+j , j =
1(1)k. The points (5.4) and (5.5) are referred to as the initial and final block of auxiliary
points, respectively. In Table 1, we have the minimum values of r required to have all the
eigenvalues of the corresponding matrix pencil (5.2) to have positive real part for all chosen
values of N · s. Where N is the multi-block size of the method (3.15) and the matrix in (5.2).
The minimum value (N · s)∗ ((N · s)∗ ≤ N · s) to have an A−stable method depend on the
block number k of the main method of interest and on the number r of the auxiliary grid points
used. Thus, we have

ȲN = −ETN
(
ĀN − zB̄N

)−1
(a− zb)Y0 ≡ φ(z)Y0; n = 0,

from (5.1), where ETN ·s = (O,O, ...,O, Is) ∈ R(N ·s). The function φ (z) is analytic for z ∈
C−, since r auxiliary grid points are introduced, the matrix pencil in (5.2) contains all the
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eigenvalues with positive real part. Therefore,such methods are A−stable provided that

| φ(it) |≤ 1, ∀t ∈ R i =
√
−1.

Table 1, shows the values of (N · s)∗ corresponding to different values of the number of r of
auxiliary grid points used.

TABLE 1. Minimum blocksize (N · s)∗ for A−stability of BVM

Boundary value methods

GBDF [20] k 1 2 3 4 5 6 7
(order p = k) r 1 1 1 2 1 2 2 2 3 1 2

s = 1 (N · s)∗ 1 2 7 4 19 6 6 8 7 12 7

SDGEBDFs [23] k 1 2 3 4 5 6
(order p = 2k − 1) r 1 1 2 4 4 8

s = 1 (N · s)∗ 2 3 5 7 9 11

Multi-block boundary value methods (3.6)

MBGBDFs k 2 3 4 5 6 7 8 9
(order p = s · k) r 1 1 1 2 2 2 4 4

s = 2 (N · s)∗ 4 6 8 10 12 14 16 18

MBGBDFs k 2 3 4 5
(order p = s · k) r 1 1 2 2

s = 3 (N · s)∗ 6 9 12 15

TABLE 2. Condition number of the matrix A − zB associated with
Ak1,k2−stable MBGBDFs (3.6); h = 1; z = hλ, s = 2

λ -1
N · s \ k 2 3 4 5

50 1.712 2.918 6.297 1.164
100 1.714 2.925 6.328 1.165
500 1.714 2.926 6.339 1.165
1000 1.714 2.926 6.339 1.165
5000 1.714 2.926 6.339 1.165
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Figure 5: Eigenvalues of the pencil (5.2) corresponding to the eight order MBGBDF (4.1) (
with block additional conditions, see (3.15) ) (k = 4, s = 2) for N · s = 8, 30.
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Figure 6: Eigenvalues of the pencil (5.2) corresponding to the order p = 14 MBGBDF (4.1) (
with block additional conditions, see (3.15) ) (k = 7, s = 2) for N · s = 14, 30.
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Figure 7: Eigenvalues of the pencil (5.2) corresponding to the order p = 12 MBGBDF (4.1) (
with block additional conditions, see (3.15) ) (k = 4, s = 3) for N · s = 12, 39.

6. THE MBGBDFS (4.1) ON DIFFERENTIAL ALGEBRAIC EQUATIONS (DAES) AND
NUMERICAL RESULTS

In this section, we apply the MBGBDF (4.1) to solving the DAEs problem (1.2) of the form

My′ = f(t, y), (6.1)

where M ∈ Rm×m may be singular, such problem arise in modelling applications which
include, electric circuit design, optimal control, chemical reaction process control, chemical
kinetics, mechanics and robotics. For convenience, Eq. (6.1) can be a linear autonomous case
as

M(t)y′(t) +Gy(t) = f(t),
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Figure 8: Boundary loci of the MBGBDFs (4.1) of order p = 2k, s = 2, k = 2(2)16, m = 0.
The exterior of the closed curves is the stable region of the method.

and is easier in the equivalent form

M(t)y′ +Gy(t)−M ′(t)y = f(t). (6.2)

Here M and G are a constant v × v matrix and f(t) is a vector valued function. However, the
problem in (6.2) will have a solution if and only if the pencil

µM +G,

is regular. That is the pencil is said to be regular, if the polynomial Ω(µ) = det(µM +G) is
not identically zeros, as a function µ. Since the pencil (M,G) is regular, it can be transformed
into the Weierstaβ-Kronicker canonical form, see [1, 2]. Details on DAEs can be found in book
of Hairer [1, 2] . This leads to the following definition.
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Figure 9: The plot of absolute value of error constant (ec),| C̄p+1 |=| Cp+1

(p+1)! | against step
number k of the GBDF in (1.3), SDGBDF in [48], SDGEBDF in (2.4) and block number k of
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Figure 10: This is an enlargement of Fig. 9 about its origin.

Definition 6.1. cf: [1] The non-linear DAEs

f
(
y′(t), y(t), t

)
= 0,

has index µ, if µ is the minimal number of differentiation,

f
(
y′(t), y(t), t

)
= 0,

df (y′(t), y(t), t)

dt
= 0, · · · , d

µf (y′(t), y(t), t)

dtµ
= 0, (6.3)

where (6.3) gives room to extract an explicit system of ordinary differential equations g′(t) =
ϕ(y(t), t).

A regular matrix pencil for the linear DAEs in definition (6.1) will have a differentiation in-
dex µ if the kronecker index is µ see [1, 2, 19]. The numerical solution of DAEs in (1.2)
becomes more difficult with increasing index µ. The next subsection considers the application
of MBGBDF (4.1) on the ODEs in (1.1) and DAEs in (1.2).
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6.1. Numerical results from the implementation of the MBGBDFs (4.1).

This subsection presents as well some numerical results of experiments to illustrate the perfor-
mance of the MBGBDFs in (4.1). of the boundary value methods comprising of (4.12), (4.13),
(4.14)and (4.15) on some stiff ODEs and DAEs problems. The MBGBDFs (4.1) for k = 3,
p = 6 is in (4.12) is implemented as main method in one-block formalism in (3.15) along with
two initial block formulas and one final block formula in (4.13), (4.14)and (4.15) respectively.
Here the one-block form

ĀN Ȳn+1 + Ā0Ȳn = h
(
B̄N F̄n+1 + B̄0F̄n

)
: MBGBDFs3(a), (6.4)

with option that a = 2, 3 indicating the choice of aBu in (4.7); where the block matrices
{ĀN , Ā0, B̄N , B̄0} as defined in (3.15) and are determine from the main method (4.12), initial
block formualas (4.13), (4.14) and final block formula (4.15). Denote the method in (6.4)
by MBGBDFs3(a), with N · s = (N · s)∗ = 6 being the minimum multi-block size that
preserves A−stability of the composite boundary value method comprising of (4.12), (4.13),
(4.14) and (4.15). All computations are carried out using the MATLAB 2010a on a Dell laptop
with configuration of Intel (R) Core (TM) i5 with processor speed of 2.5GH and RAM of
8GB. The minimum block dimension leads to minimial block method and is employed in the
implementation as shown in the Table 3, 4, 5 and 6. The numerical solution from ODE15s in
MATLAB is used as our reference solution. Consider the numerical solution of the following
stiff ODEs and DAEs.
Problem 1: Consider the linear problem in [19, 23]

y′ =

 −21 19 −20
19 −21 20
40 −40 −40

 y, y(0) =

 1
0
−1

 ; (6.5)

y(t) =
1

2

 e−2t + e−40t (cos(40t) + sin(40t))
e−2t − e−40t (cos(40t) + sin(40t))

2e−40t (cos(40t)− sin(40t))


Table 3 shows the numerical test containing the maximum relative error max

(
|y−y(t)|
1+|y(t)|

)
in

the interval 0 ≤ t ≤ 1 . The results from MBGBDFs3 are compare with GBDFs6 of order 6 in
Brugnano and Trigiante [19], and SDGEBDFs3(a) in [23] of order 6. The case of the method
MBGBDFs(a=2) compares in accuracy with other methods in the Table 3. In Table 3, it seen
that the MBGBDFs3(a=3) performs better than GBDFs6 in accuracy and compares with the
accuracy from SDGEBDFs3. The (rate) is the numerical order of convergence. In all, the rate
is in agreement with the order p of the respective multi-block boundary value methods in Table
3.
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Problem 2: A non-autonomous DAEs of index 2 from [19],

(
0 0
1 ηt

)
y′ +

(
1 ηt
0 1 + η

)
y =

(
et

t2

)
; t ∈ [−0.5, 0.5] ,

y(−0.5) =

(
−0.356530659712633
0.606530659712633

)
, y(t) =

(
et

t2 − et
)

This problem 2 is conveniently written in an equivalent form as in (6.2) before being solved
for η = 0, 1,−1. In Table 4, are results of the numerical errors and the numerical order
(rate) of convergences at the output T = 0.5. The numerical accuracy of MBGBDFs3(a=3)
are in comparison with that from GBDFs6 in [19], with MBGBDFs3(a=3) converging with
appropriate numerical order rate which close to the real order p = 6. The order of convergence
for MBGBDFs3 is sk − µ+ 2.

TABLE 3. Numerical solution of problem 1 in the interval 0 < t ≤ 1 with
Ns = (N · s)∗ = 6

MBGBDFs3(a=2) MBGBDFs3(a=3) GBDFs6 SDGBEDFs3
(N · s)∗ 6 6 6 5

p 6 6 6 6
h error error error error

(rate) (rate) (rate) (rate)

1.0e− 2 2.56e− 4 1.64e− 4 2.51e− 3 3.50e− 5
(−) (−) (−) (−)

5.0e− 3 1.77e− 5 8.94e− 6 9.096e− 5 2.21e− 6
(3.84) (4.18) (4.79) (4.00)

2.5e− 3 2.40e− 7 1.10e− 7 1.81e− 6 2.77e− 8
(6.20) (6.34) (5.65) (6.60)

1.25e− 3 1.99e− 9 9.60e− 10 3.04e− 8 2.29e− 9
(6.90) (6.84) (5.90) (6.91)

6.25e− 4 2.04e− 11 9.59e− 12 4.85e− 10 2.29e− 12
(6.60) (6.65) (5.97) (6.64)

The maximum relative error from Ode15s at t = 1 is 3.660087954199254e− 5
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TABLE 4. Numerical solution of problem 2 at the output T = 0.5 with N = 3

MBGBDFs3(a=3) GBDFs6
(N · s)∗ 6 6

p 6 6
h error error

(rate) (rate)

1.250e− 1 1.87e− 7 6.50e− 7
(−) (−)

6.250e− 2 9.89e− 10 1.19e− 8
(7.56) (5.80)

3.125e− 2 1.42e− 11 2.02e− 10
(6.12) (5.90)

Problem 3: The problem consider is of index 3, [19] 0 0 0
1 0 0
0 1 0

 y′ + y =

 cost
0
0

 ; t ∈ [−0.5, 0.5] ,

y(t) =

 cost
sint
−cost

 , y(−0.5) =

 0.877582561890373
−0.479425538604203
−0.877582561890373


The results of solving problem 3 are in Table5. In Table 5, are the absolute errors , along
with the rate of convergence of the implemented method MBGBDFs3(a = 3). The order of
convergences of the MBGBDFs3(a = 3) is such that s · k− µ+ 2 = s · k− 1. It is clear from
the numerical results in Table 5 that the MBGBDFs3(a = 3) and GBDFs6 are of comparable
accuracy. The choice of (a = 2) as noted already in MBGBDFs3(a = 2) is not amenable to
the numerical solution of DAEs because it leads to singularity of the Jacobian in the method.
Problem 4a: Robertson’s equation of index 1 in [1]

y′1 = −0.04y1 + 104y2y3, y′2 = 0.04y1 − 104y2y3 − 3× 107y22,

0 = y1 + y2 + y3 − 1; y1(0) = 1, y2(0) = 0, y3(0) = 0,

From definition (6.1), the DAE of index one in problem 4 can be written in ODEs in (1.1) as,
Problem 4b: Robertson’s equation, [1]

y′1 = −0.04y1 + 104y2y3, y′2 = 0.04y1 − 104y2y3 − 3× 107y22,

y′3 = 3× 107y22; y1(0) = 1, y2(0) = 0, y3(0) = 0.
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TABLE 5. Numerical solution of problem 3 at the output T = 0.5 with N = 3

MBGBDFs3(a=3) GBDFs6
(N · s)∗ 6 6

p 6 6
h error error

(rate) (rate)

1.250e− 1 2.68e− 5 1.06e− 5
(−) (−)

6.25e− 2 6.53e− 7 3.78e− 7
(5.35) (4.80)

3.125e− 2 1.72e− 8 1.25e− 8
(5.24) (4.90)

Table 6, contains the absolute error which is given as the modulus of the ODE15s in MATLAB
[49] minus the numerical solution of the MBGBDFs3(a=3).
The stepsize h = 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 have been used to compute the
log
(

max
(
|y−y(t)|
1+|y(t)|

))
for all the problems considered, the plot is given in Fig. 11. We observe

that the number of Jacobian calls can be estimated by Integer
(

step
(N ·s)∗

)
in Table 7.

7. CONCLUSION, FURTHER AND FUTURE INVESTIGATION

This paper has presented for the first time the multi-block boundary value methods (MB2VMs).
The MB2VMs introduced herein are a novel approach at developing very large scale integra-
tion methods (VLSIM) in the numerical solution of differential equations. The derivation of the

TABLE 6. Errors from problem 4a, 4b using Erryi =| yi (3.15) −
ODE15s(yi) |, i = 1(1)3, h = 0.0001

Problem 4a problem 4b

t Erry1 Erry2 Erry3 Erry1 Erry2 Erry3

1 1.48e− 6 2.35e− 10 −1.48e− 6 −4.41e− 7 −7.03e− 11 4.41e− 7

5 7.76e− 6 8.23e− 10 7.76e− 6 −2.89e− 6 7.11e− 10 −2.89e− 6

10 2.27e− 5 1.72e− 9 2.27e− 5 1.09e− 5 1.26e− 9 1.09e− 5
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Figure 11: Log of maximum absolute error from MBGBDFs3(a=3) against log h

proposed families of MB2VMs have been done in a unified framework, based on multi-block
methods of [11]. The theoretical properties of the methods with respect to consistency, order
and stability along with other practical aspect of implementation have also been presented. The
Weiner-Hopf matrix factorization of the characteristics matrix polynomial of the main method
along with the root distribution of the arising stability polynomial have been used to deter-
mine the structure of the arising multi-block boundary value method in (3.6). Examples are in
(4.12) amongst others. More so, a particular family of MB2VMs called MBGBDFs in (4.1)
has been proposed. Finally, the numerical results presented in Tables 3, 4, 5 and 6 , shows that
MBGBDFs compare in accuracy with methods from [19] and [23] on some considered ODEs
and DAEs in Section 6. The errors of the three problems are plotted against stepsize h on a
log-log scale in Fig. 11.

TABLE 7. The number of function calls, Jacobian calls, number of LU de-
composition and response time in seconds at the output point t = 1.0 for
problem 1 and T = 0.5 for Problem 2 and 3, on implementing the method
MBGBDFs3(a=3) with minimum block size (N · s)∗

Problem (N · s)∗ steps Function calls Jacobian calls LU Time (seconds)

2 6 105 1260 15 90 0.21

1 and 3 6 105 1890 15 90 0.25
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On a conclusive note, further research will focus on deriving the multi-block boundary value
methods

k2∑
j=−k1

A
(q)
j (s)Yn+j =

q∑
l=1

hl

 k2∑
j=−k1

B
(l)
j (s)F

(l−1)
n+j

 ;
k1 + k2 = k ≥ 2

q ≥ 1
, n = 0, 1, · · ·

Y0, Y1, · · ·, Yk1−1︸ ︷︷ ︸
(a1)

Yk1
, · · · , YN−k2︸ ︷︷ ︸

multi-block of solution values to be generated by the MB2VM

YN−k2+1, · · · , YN︸ ︷︷ ︸
(a2)

(7.1)

based on (1.7) with block definitions in (1.8) which may employ derivative evaluations. The
case of k = 1 gives rise to initial value multi-block methods. The multi-block boundary
value methods to be presented in future works are along the line of thoughts of the well-known
boundary value methods of TOM, GAM and ETR2s in [19], SDGEBDF in [23] and GSDLMM
in [21] based on Enright [22]. We will also consider the use of pre-conditioning (see [41]) in
(3.19) considered instead as a block of system of linear equations,

(ĀN − hB̄NJ)4[i]
n+1 = (ĀN Ȳ

[i]
n+1 + Ā0Ȳn − hB̄0F̄n − hB̄N F̄ [i]

n+1); (7.2)

Ȳ
[i+1]
n+1 = Ȳ

[i]
n+1 +4[i]

n+1; i = 0(1)q, q > 1, J =
∂M

∂Y
(7.3)

while also taking advantage of parallelism in the efficient implementation of these new multi-
block boundary value methods. The MB2VMs in (3.6) and in (7.1) output multi-block of
solutions on a single application on ODEs in (1.1) and (1.2), unlike the conventional linear
multistep methods in (1.3) which output a solution at a point or the conventional boundary
value methods (1.4) and multi-block methods [11] which output a block of solution per step.
This Multi-block of solution output of the MB2VMs in (3.6) and in (7.1) is a considered ad-
vantage over existing numerical methods for the solution of the ODEs in (1.1) and the DAEs
in (1.2). The large-scale linear algebra implementation in (7.2) of the novel approach of the
methods in (3.6) on a high dimensional system of ODEs in (1.1), will benefit from the massive
parallelism offered by the modern system of heterogeneous CPU-GPU parallel architecture
for high performance computing (HPC) [52, 53] at extreme/exa-scale. This will be an open
worthwhile investigation in the future.

ACKNOWLEDGMENTS

This is to express our gratitude to the anonymous reviewers whose comments have greatly
improved the quality of the final draft of this work.

REFERENCES

[1] E. Hairer and G. Wanner, Numerical methods for initial value problems in ordinary differential equations II,
Springer, Berlin, 1996.

[2] K. Brenan, S. Campbell and L. Petzold, Numerical solution of initial-value problems in differential-algebraic
equations, North-Holland, New York, 1989.

[3] G. Dahlquist, A special stability problem for linear multistep methods, BIT. 3 (1963), 27–43.



290 OGUNFEYITIMI AND IKHILE

[4] M. Ihkile and R. Okuonghae,(2007) Stiffly stable continuous extension of second derivative LMM with an
off-step points IVPs in ODEs, J Nig Assoc Math Phy 11, (2007), 175–190.

[5] S. Ogunfeyitimi and M. Ikhile, Implicit-Explicit Methods Based on Recursively Derived Second Derivative
LMM. J. Nigerian Association of Mathematical Physics. 38, (2016), 57–66.

[6] R. Okuonghae , M. Ikhile , L(α)-stable variable-order implicit second derivative Runge-Kutta methods. J.
Numer. Analysis and Applications 7, (2014), 314–327.

[7] S. Fatunla, Block methods for second order ODEs, Int J. Comput. Mat. 14, (1990), 55–56.
[8] L. Shampine and H. Watt, Block implicit one-step methods, Mat. Comput. 23, (1969), 731–740.
[9] B. Sommeijer, W. Couzy and P. Houwen, A-stable parallel block methods, report NM-R8919. Centeer for

Math. and Comp. Sci., Amsterdam, 1989.
[10] P. Chartier, L-sstable parallel one-block methods for ordinary differential equations, Technical report 1650

INRIA. (1993),
[11] M. Chu and H. Hamilton, Parallel solution of ODEs by multi-block methods, SIAM J. Sci. Stat. Comput, 8

(1987), 342—535.
[12] O. Ibrahim and M. Ikhile, Generalized family of symmetric multistep methods with minimial phase-lag

for initial value problems in ordinary differential equations Mediterranean J. Math. 17 (2020), 1–30.
Doi.org/10.1007/s00009-020-01507-5

[13] P. Olatunji and M. Ikhile, Strongly regular general linear methods J. Sci. Comp. 82,(2020), 1–30.
Doi.org/10.1007/s10915-019-01107-w

[14] J. Lambert, Numerical methods for ordinary differential equations, Wiley, New York, 1991.
[15] S. Fatunla, Numerical methods for initial value problems in ordinary differential equations, Academic Press

Inc, London, 1989.
[16] P. Amodio, W.Golik and F. Mazzia , Variable-step boundary value methods based on reverse Adams schemes

and their grid distribution, Appl. Numer. Math. 18 (1995), 5–21.
[17] A. Axelsson and J. Verwer, Boundary value techniques for initial value problems in ordinary differential

equations, Math. Comput. 45 (1985), 153–171.
[18] L. Brugnano and D. Trigiante, Convergence and stability of boundary value methods for ordinary differential

equations. J. Comput. Appl. Math. 66 (1996), 97–109.
[19] L. Brugnano and D. Trigiante, Solving differential problems by multistep initial and boundary value methods,

Gordon and Breach Science Publishers, Amsterdam 1998.
[20] L. Aceto and D. Trigante, On the A-stable method in the GBDF class, Nonlinear Analysis Real World appl. 3

(2002), 9–23.
[21] S. Ogunfeyitimi and M. Ikhile, Generalized second derivative linear multistep methods based on the methods

of Enright. Int. J. Appl. and Comput. Math 6, 76 (2020)https://doi.org/10.1007/s40819-020-00827-0
[22] W.H. Enright, it Second derivative multistep methods for stiff ordinary differential equations, SIAM J. Numer.

Anal. 11 (1974), 321–331.
[23] S. Ogunfeyitimi and M. Ikhile, Second derivative generalized extended backward differentiation formulas for

stiff problems. J Korean Soc Ind Appl Math 23,(2019), 179–202. Doi.org/10.129441/jksiam.2019.23.179
[24] P. Amodio and F. Mazzia, Boundary value methods for the solution of differential-algebraic equations, Appl.

Numer. Math. 66 (1994), 411–421.
[25] F. Mazzia, Boundary Value Methods for the numerical solution of boundary value problems in differential

algebraic equations, Bollettino dellUnione Matematica Italiana 7 (1997), 579–593.
[26] L. Brugnano and D. Trigiante, Block boundary value methods for linear hamiltonian systems, Appl. Math.

Comput. 81 (1997), 49–68.
[27] L. Brugnano and D. Trigiante, High order multistep methods for boundary value problems. Appl. Numer.

Math. 18 (1985), 79–94.
[28] L. Brugnano and D. Trigiante, Block implicit methods for ODEs, in: D Trigiante (Ed.), Recent Trends in

Numerical Analysis, Nova Science, New York (2000), 81–105.



MB2VMS FOR ODEs AND DAEs 291

[29] J. Zhang and H. Chen, Asymptotic stability of block boundary value methods for delay differential-algebraic
equations, Math. Comput. Simulation 81 (2010), 100–108.

[30] J. Zhang and H. Chen, Block boundary value methods for delay differential equations, Appl. Numer. Math. 60
(2010), 915–923.

[31] L. Brugnano, F. Lavernaro and T. Susca, Hamiltonian BVMs (HBVMs): implementation details and applica-
tions, AIP. Conf. Proc. 1168 (2009), 723–726.

[32] L. Brugnano, F. Lavernaro and D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete
line integral methods), J. Numer. Anal. Ind. Appl. Math. 5 (2010), 17–37.

[33] F. Mazzia and A. Nagy, Solving Volterra integro-differential equations by variable stepsize block BS methods:
properties and implementation techniques, Appl. Math. Comput. 239 (2014) 198–210.

[34] J. Zhang and H. Chen, Convergence and stability of extended block boundary value methods for Volterra delay
integro-differential equations, Appl. Numer. Math. 62 (2012), 141–154.

[35] Y. Xu, J. Gao and Z. Gao, Stability analysis of block boundary value methods for Neutral pantograph equation,
J. Differ. Eqn. Appl. 119 (2013), 1127–1242.

[36] Y. Xu, J. Gao and Z. Gao, Stability analysis of block boundary value methods for Neutral pantograph equation
with many delays, App. Mat. Model 38 (2014), 325–335.

[37] F. Iavernaro and F. Mazzia, Block-boundary value methods for the solution of ordinary differential equations,
SIAM. J. Sci. Comput. 21 (1999), 323–339.

[38] A. Iserles and S. Nørsett, On the theory of parallel Runge—Kutta methods. IMA J. Numer. Analysis, 10,
(1990), 463—488. https://doi.org/10.1093/imanum/10.4.463.

[39] M. Ikhile and K. Muka, A digraph theoretic parallelism in block methods, Afr. Mat. 26 (2015), 1651-1667
https://doi.org/10.1007/s13370-014-0307-2

[40] E. Ugalde, Computation of invariant pairs and matrix solvents Doctoral dissertation, Universit deLimoges.
2015

[41] M. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press Inc., New York, 2004.
[42] F. Iavernaro, F. Mazzia and D. Trigiante, Eigenvalues and quasi-eigenvalues of branded Toeplitz matrices:

some properties and application, Numer. algorithm 31 (2002), 157–170.
[43] R. Beam and R. Warming, The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices, SIAM J.

Sci. Comput. 14 (1993), 971–1006.
[44] A. Bottcher and M. Halwass, A Newton method for canonical Wiener-hopf and spectral factorization of matrix

polynomial Linear Algebra App. Vol. 26 (2003), 873–897.
[45] A. Bottcher and M. Halwass, Wiener-Hopf and spectral factorization of real polynomials by Newton’s method.

Linear Algebra Appl. 438 (2013), 4760–4805.
[46] E. Hairer and G. Wanner, Exploiting hidden structure in matrix computations, Algorithms and Applications,

Springer, Cetraro,Italy, 2015.
[47] L. Brugnano and C. Magherini, Blended implementation of block implicit methods for ODEs, Appl. Numer.

Math. 42 (2002), 29–45.
[48] G. Nwachukwu and T. Okor, Second derivative generalised backward differentiation formulae for solving stiff

problems, LAENG. Int. J. Appl. Math. 48 (2018), 1–15.
[49] D.J. Higham, N.J. Higham, MATLAB guide. 2nd ed. SIAM, Philadelphia, 2005.
[50] J.Borwein and M. Skerritt, An Introduction to Modern Mathematical Com-puting with Mathematica, Springer,

Berlin 2012
[51] Wolfram Research, Inc. Mathematica, Version 11.1
[52] J. Sanders and E. Kandrot, CUDA by Example: an Introduction to General-Purpose GPU Programming,

Addison-Wesley Professional, Michigan 2010
[53] L. Chopp, Introduction to High Performance Scientific Computing (1st. ed.), SIAM, Philadelphia, PA, USA.

2019


