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HOW TO SOLVE AN INFINITE SIMULTANEOUS

SYSTEM OF QUADRATIC EQUATIONS

Phil Ung Chung* and Ying Zhen Lin

Abstract. In the present paper we shall introduce several oper-
ators on the reproducing kernel spaces. And using them we shall
find a solution of an infinite system of quadratic equations (1.1).
In particular we shall convert problem for finding an approximate
solution of infinite system of quadratic equations into problem for
minimizing nonnegative biquadratic polynomial.

1. Introduction

Throughout this paper we shall concern with an infinite system of
quadratic equations

(1.1)

{∑∞
i=1 aii,kx

2
i +

∑∞
i6=j aij,kxixj = bk, (k ∈ N)

x1 = x0(constant),

where X = (x1, x2, · · · ) ∈ `2, b = (b1, b2, · · · ) ∈ `2,
∑∞

i,j=1 (aij,k)
2 <

+∞, (k ∈ N), and aij,k = aji,k for all i, j ∈ N. If we informally introduce
∞×∞ symmetric matrix

Ak = (aij,k)∞×∞ , (k ∈ N),

then (1.1) can be transformed into

(1.2)

{
(X,AkX

T )`2 = bk, (k ∈ N)

x1 = x0

and vice versa, where (·, ·)`2 denotes the standard inner product in `2-
space.
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The purpose of the present paper is to find a solution of an infinite
system of quadratic equations (1.1). In particular we shall convert prob-
lem for finding an approximate solution of infinite system of quadratic
equations into problem for minimizing nonnegative biquadratic polyno-
mial.

2. Preliminaries

The reproducing kernel spaceW 1
2 [0, 1] is defined as the set of functions

W 1
2 [0, 1] = {u(t)|u is absolutely continuous and u, u′ ∈ L2[0, 1]},

equipped with the inner product

(u, v)W 1
2

=

∫ 1

0

(u(t)v(t) + u′(t)v′(t)) dt

and with norm
‖u‖2

W 1
2

= (u, u)W 1
2
.

The reproducing kernel of W 1
2 [0, 1] can be given by

(2.3) Rη(t) =
1

2(e2 − 1)

(
et+η + e2−(t+η) + e|t−η| + e2−|t−η|) ,

for each t, η ∈ [0, 1], which satisfies the reproducing property

(2.4) (u(t), Rη(t))W 1
2

= u(η)

for every u ∈ W 1
2 [0, 1].

Let D = [0, 1]× [0, 1]. The reproducing kernel space W (D) is defined
as the set of functions

W (D) =

{
u(s, t)|u is complete continuous,

∂u

∂s
,
∂u

∂t
,
∂2u

∂s∂t
∈ L2(D)

}
,

equipped with the inner product

(u, v)W (D) =

∫ ∫
D

(
uv +

∂u

∂s

∂v

∂s
+
∂u

∂t

∂v

∂t
+

∂2u

∂s∂t

∂2v

∂s∂t

)
dsdt

and with norm
‖u‖2

W (D) = (u, u)W (D).

The reproducing kernel of W (D) can be given by

(2.5) K(ξ,η)(s, t) = Rξ(s)Rη(t),

where Rξ(t) is given by (2.3) [1].
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3. Linear operators on reproducing kernel spaces

In this section we shall introduce several operators, which will be
needed in the later parts of our discussion. Throughout the present
paper we shall choose and fix a countable dense subset

(3.6) T = {t1, t2, · · · }
of the interval [0, 1], and put

(3.7) φi(t)
def
= Rti(t), i ∈ N.

Lemma 3.1. The sequence of functions {φi(t)}∞i=1 constitutes a com-
plete system of W 1

2 [0, 1].

Proof. Let u(t) ∈ W 1
2 [0, 1]. Since (u(·), φi(·))W 1

2
= u(ti) for each i ∈

N, we have (u(·), φi(·)) = 0 if and only if u(ti) = 0 if and if u(t) = 0,
which proves our assertion.

Using Gram-Schmidt process, we orthonormalize {φi(t)}∞i=1 to obtain
an orthonormal system {φ̄i(t)}∞i=1 for W 1

2 [0, 1],

φ̄i(t)
def
=

i∑
l=1

αilφl(t),

where αil are the orthonormal coefficients.
We shall define an operator ρ : `2 −→ W 1

2 [0, 1] by

(3.8) ρX
def
=

∞∑
i=1

xiφ̄i(t)

for each X = (x1, x2, · · · ) ∈ `2. It is easy to show that ρ is one-to-one
and norm preserving. It is noteworthy that (1.2) can be converted into

(3.9)
(
u(·), (ρAkρ

−1u)(·)
)

W 1
2

= bk, (k ∈ N)

where u(t) = ρX.

Again we shall define an operator Ãk : W 1
2 [0, 1] −→ W 1

2 [0, 1] by(
Ãku

)
(t)

def
=
(
ρAkρ

−1u
)
(t), k ∈ N

for each u(t) ∈ W 1
2 [0, 1]. Thus (3.9) can be converted into(

u(·), (Ãku)(·)
)

W 1
2

= bk, k ∈ N
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that is, ∫ 1

0

[
u(t)(Ãku)(t) + u′(t)(Ãku)

′(t)
]
dt = bk.

Let I and D be the identity and differential operators on W 1
2 [0, 1]

respectively. For each k ∈ N, we shall define an operator Hk : W (D) −→
R by

(3.10)

Hkv
def
=

∫ 1

0

[(
Ã

(·)
k I

(∗) + (DÃk)
(·)D(∗)

)
v(∗, ·)

]
(t)dt, v ∈ W (D),

where ” · ” and ” ∗ ” denote the variables corresponding to function
respectively.

4. Operator equation associated with (1.2)

We shall introduce an operator L : W (D) → W 1
2 [0, 1] defined by

(4.11) (Lv)(t)
def
= ρ((H1v,H2v, · · · )) =

∞∑
k=1

(Hkv)φ̄k(t), v ∈ W (D)

where Hk and ρ are given by (3.10) and (3.8) respectively. In fact, since
L is a composition of bounded linear operators I, Ãk, D, ρ and integral,
we have L is also bounded linear operator.

Lemma 4.1. Let X = (x1, x2, · · · ) ∈ `2, and let ρX = u(t). Then we
have

(4.12) u(t1) = x1‖φ1‖W 1
2
.

Proof. Since {φ̄i(t)}∞i=1 is an orthonormal system of W 1
2 [0, 1], we have,

by virtue of (2.4), (3.7), and (3.8),

u(t1) = (u(·), φ1(·))W 1
2

= ‖φ1‖
(
u(·), φ̄1(·)

)
W 1

2

= ‖φ1‖

(
∞∑
i=1

xiφ̄i(·), φ̄1(·)

)
W 1

2

= x1‖φ1‖W 1
2
.
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Theorem 4.2. Let X = (x1, x2, · · · ) ∈ `2 and x1
def
= x0, and let

ρX = u(t). Then X is a solution of (1.2) if and only if u(s)u(t) ∈ W (D)
is a solution of

(4.13) (Lv)(t) = f(t),

where f(t)
def
=
∑∞

k=1 bkφ̄k(t).

Proof. Suppose that X is a solution of (1.2). Then we have

(Lu(∗)u(·))(t)
= ρ((H1u(∗)u(·), H2u(∗)u(·), · · · ))

= ρ

((∫ 1

0

[
u(t)(ρA1ρ

−1u)(t) + u′(t)(ρA1ρ
−1u)′(t)

]
dt, · · ·

))
= ρ

((
(u(·), (ρA1ρ

−1u)(·))W 1
2
, · · ·

))
= ρ

((
(X,A1X

T )`2 , · · ·
))

= ρ ((b1, · · · ))
= f(t).

Conversely suppose that u(s)u(t) is a solution of (4.13). Then we
have

ρ((u(t), (ρA1ρ
−1u)(t))W 1

2
, · · · )) = ρ((b1, b2, · · · )).

Since ρ is one-to-one and norm preserving, we obtain, by virtue of
Lemma 4.1,

((X,A1X
T ), · · · ) = (b1, · · · ), x1 = x0.

Hence our assertion is proved.

5. Direct sum decomposition of W (D)

Using the adjoint operator L∗ of L defined by (4.11), we define ψi(s, t)
by

(5.14) ψi(s, t)
def
= (L∗φi)(s, t) = (L∗Rti)(s, t), (i ∈ N).

Lemma 5.1. A function ψi(s, t), defined above, can be expressed by

(5.15) ψi(s, t) =
∞∑

k=1

(
∞∑
i=1

∞∑
j=1

aij,kφ̄i(s)φ̄j(t)

)
φ̄k(ti), (i ∈ N)
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Proof. By virtue of (2.4), (2.5), (3.7), (3.10), and (4.11), we have

ψi(s, t) = ((L∗φi)(∗, ·), Rs(∗)Rt(·))W (D)

= (φi(�), (LRs(∗)Rt(·))(�))W 1
2

= (LRs(∗)Rt(·))(ti)

=
∞∑

k=1

(
Rs(·), (ÃkRt)(·)

)
W 1

2

φ̄k(ti)

=
∞∑

k=1

(
ρAkρ

−1Rt

)
(s)φ̄k(ti).

On the other hand, since

Rt(s) =
∞∑

k=1

(Rt(·), φ̄k(·))W 1
2
φ̄k(s) =

∞∑
k=1

φ̄k(t)φ̄k(s)

we have

ρ−1Rt(s) = (φ̄1(t), φ̄2(t), · · · ) ∈ `2,
hence

(ρAkρ
−1Rt)(s) =

∞∑
i=1

(
∞∑

j=1

aij,kφ̄j(t)

)
φ̄i(s).

Thus we obtain the desired result

ψi(s, t) =
∞∑

k=1

(
∞∑
i=1

∞∑
j=1

aij,kφ̄j(t)φ̄i(s)

)
φ̄k(ti).

By Gram-Schmidt process, we obtain an orthonormal system

{ψ̄i(s, t)}∞i=1

of W (D) such that

(5.16) ψ̄i(s, t)
def
=

i∑
k=1

βikψk(s, t),

where βik are orthonormal coefficients.
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Let S be the closure of span
(
{ψ̄i(s, t)}∞i=1

)
and let S⊥ be the orthog-

onal complement of S in W (D). We choose a countable dense subset
B = {(s1, t1), (s2, t2), · · · } of D. It is easy to show that

ρj(s, t)
def
= Rsj

(s)Rtj(t), j ∈ N
constitutes a basis of the space W (D). Again we orthonormalize

{ψ̄1, ψ̄2, · · · , ρ1, ρ2, · · · }
to obtain

ρ̄j(s, t) =
ρj(s, t)−

∑∞
k=1(ρj, ψ̄k)ψ̄k −

∑j−1
m=1(ρj, ρ̄m)ρ̄m

‖ρj(s, t)−
∑∞

k=1(ρj, ψ̄k)ψ̄k −
∑j−1

m=1(ρj, ρ̄m)ρ̄m‖W (D)

, j ∈ N,

that is,

(5.17) ρ̄j(s, t)
def
=

∞∑
k=1

βjkψ̄k(s, t) +

j∑
m=1

β∗jmρm(s, t), j ∈ N.

Hence we have W (D) = S⊕S⊥, and {ψ̄1, ψ̄2, · · · , ρ̄1, ρ̄2, · · · } constitutes
an orthonormal basis for W (D).

6. A separated type solution of (Lv)(t) = f(t)

Theorem 4.2 tells us that finding a solution of (1.2) is equivalent to
finding a separated type solution of (4.13).

Theorem 6.1. Let λ = (λ1, λ2, · · · ) and (α1k, α2k, · · · ) be arbitrary
constant in `2 for each k ∈ N. With the same notation of (5.16),

(6.18) v(s, t) =
∞∑
i=1

i∑
k=1

αikf(tk)ψ̄k(s, t) +
∞∑

j=1

λj ρ̄j(s, t)

is a solution of (4.13), where f(t)
def
=
∑∞

k=1 bkφ̄k(t).

Proof. Taking L of both sides of (6.18), we have

(Lv)(t) =
∞∑
i=1

i∑
k=1

αikf(tk)(Lψ̄i)(t) +
∞∑

j=1

λj(Lρ̄j)(t).

Let T be the same set as (3.6). For every tl ∈ T , we have

(Lρ̄j)(tl) = (Lρ̄j, φl)W 1
2

= (ρ̄j, L
∗φl)W (D) = (ρ̄j, ψl)W (D) = 0.
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Hence

(Lv)(tl) =
∞∑
i=1

i∑
k=1

αikf(tk)(Lψ̄i)(tl)

=
∞∑
i=1

i∑
k=1

αikf(tk)(Lψ̄i, φl)W 1
2

=
∞∑
i=1

i∑
k=1

αikf(tk)(ψ̄i, ψl)W (D).

Multiplying both sides of the above equality by βnl and summing with
respect to l, (1 ≤ l ≤ n), we have, in the view of (5.16),

n∑
l=1

βnl(Lv)(tl) =
∞∑
i=1

i∑
k=1

αikf(tk)(ψ̄i, ψ̄n)W 1
2

=
n∑

k=1

αnkf(tk).

We claim that(Lv)(tm) = f(tm) holds for all m ∈ N. For n = 1, it
is easy to show that (Lv)(t1) = f(t1). For induction, we assume that
(Lv)(tn) = f(tn) holds for n ≤ m. Since

m+1∑
l=1

αm+1,l(Lv)(tl) =
m+1∑
k=1

αm+1,kf(tk)

and
m∑

l=1

αm+1,lf(tl) + αm+1,m+1(Lv)(tm+1) =
m+1∑
k=1

αm+1,kf(tk),

we have
(Lv)(tm+1) = f(tm+1).

Hence (Lv)(tm) = f(tm) holds for every tm ∈ T . Since T is dense in
[0, 1], we conclude (Lv)(t) = f(t) holds for all t ∈ [0, 1]. Therefore our
assertion is proved.

Lemma 6.2. If v(s, t) of (6.18) is expressible as a separated type
u(s)u(t), then we have

(i) v(t1, t) = x0‖φ1‖u(t)
(ii) v(t, t) = u2(t)
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Theorem 6.3. If v(s, t) of (6.18) is expressible as a separated type
u(s)u(t), then we have

(6.19) u(t) =
1

x0‖φ1‖

[
∞∑
i=1

i∑
k=1

αikf(tk)ψ̄i(t1, t) +
∞∑

j=1

λj ρ̄j(t1, t)

]
,

where f(t)
def
=
∑∞

k=1 bkφ̄k(t).

Proof. We have, by virtue of (6.18),

u(s)u(t) =
∞∑
i=1

i∑
k=1

αikf(tk)ψ̄i(s, t) +
∞∑

j=1

λj ρ̄j(s, t).

Putting s = t1 and dividing both sides of the above by u(t1), we have
the required result by Lemma 6.1.

Remark : If we take partial sum of (6.19) to get an approximation
unm(t) of u(t), then we have

unm(t) =
1

x0‖φ1‖

[
n∑

i=1

i∑
k=1

βikf(tk)ψ̄i(t1, t) +
m∑

j=1

λj ρ̄j(t1, t)

]
for each m,n ∈ N. In order to obtain unm, we have to determine the
values of λ1, · · · , λm. To do so, it suffices to find λ1, · · · , λm so that they

may minimize G
def
= ‖vnm(t, t) − u2

nm(t)‖2
W 1

2
, where vnm(t, t) is a partial

sum of (6.18) in correspondence with unm(t). Fortunately G is a bi-
quadratic polynomial with respect to λ1, · · · , λm, of which optimization
problem is familiar to us. In the present paper we converted problem for
finding an approximate solution of infinite system of quadratic equations
into problem for minimizing biquadratic polynomial. Running Mathe-
matica 4.2 for a concrete example, it can be easily confirmed that our
result is effective.

References

[1] Ming Gen Cui & Bo Ying Wu. Reproducing Kernel Space and Numerical Analysis.
Ke Xue Chu Ban She, Bei Jing, 2004



284 Phil Ung Chung and Ying Zhen Lin

[2] T.Y. Li, T. Sauer, J.A. Yorke. Numerical solution of a class of deficient polynomial
system. SIAM Nuerical Math. 51(1991), 481–500

[3] T.Y.Li. On Chow mallet-Paret and Yorke homotopy for solving systems of poly-
nomials. Bulletin of the Institute of Mathematics Acad.Sin. 11(1983), 433–437

Phil Ung Chung
Department of Mathematics
Kangwon National University
Chunchon, Kangwon 200–701, Korea
E-mail : puchung@kangwon.ac.kr

Ying Zhen Lin
Department of Mathematics
Harbin Institute of Technology, Weihai Campus
Weihai, San Dong 264209, P.R. of China


