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JACOBI SPECTRAL GALERKIN METHODS FOR

VOLTERRA INTEGRAL EQUATIONS WITH

WEAKLY SINGULAR KERNEL

Yin Yang

Abstract. We propose and analyze spectral and pseudo-spectral Jacobi-
Galerkin approaches for weakly singular Volterra integral equations
(VIEs). We provide a rigorous error analysis for spectral and pseudo-
spectral Jacobi-Galerkin methods, which show that the errors of the ap-
proximate solution decay exponentially in L

∞ norm and weighted L
2-

norm. The numerical examples are given to illustrate the theoretical
results.

1. Introduction

Volterra integral equations (VIEs) arise widely in mathematical models of
certain biological and physical phenomena. Due to the wide application of these
equations, they must be solved successfully with efficient numerical methods.

In this article, we are concerned with the numerical study of the following
Volterra integral equations with weakly singular kernel:

y(t) =

∫ t

0

(t− τ)−γK(t, τ)y(τ)dτ + f(t), 0 < γ < 1, t ∈ [0, T ],(1)

where the source function f and the kernel function K are given and the func-
tion y(t) is the unknown function. Here, f and K are assumed to be sufficiently
smooth on their respective domains [0, T ] and 0 ≤ τ ≤ t ≤ T .

The numerical treatment of the VIEs (1) is a challenge work, mainly due
to the fact that the solutions of (1) usually have a weak singularity at t =
0, even when the inhomogeneous term f(t) is regular. Collocation spectral
methods and the corresponding error analysis have been provided recently [14,
16] for (1) without the singular kernel (i.e., γ = 0) in case of the underlying
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solutions are smooth. Chen and Tang [4, 17] developed a novel spectral Jacobi-
collocation method to solve (1) and provided a rigorous error analysis which
theoretically justifies the spectral rate of convergence, see also [19] for Jacobi
spectral-collocation method for fractional integro-differential equations. In [20],
the authors extended the Legendre-collocation methods to nonlinear Volterra
integral equations. Recently, in [16], the authors provided a Legendre spectral
Galerkin method for second-kind Volterra integral equations, [15, 18] provide
general spectral and pseudo-spectral Jacobi-Petrov-Galerkin approaches for the
second kind Volterra integro-differential equations. Inspired by those work, we
extend spectral Galerkin approach to Volterra integral equations with weakly
singular kernels and provide a rigorous convergence analysis for the spectral and
pseudo-spectral Jacobi-Galerkin methods, which indicates that the proposed
methods converges exponentially provided that the data in the given VIEs are
smooth.

This paper is organized as follows. In Section 2, we demonstrate the imple-
mentation of the spectral and pseudo-spectral Galerkin approaches for Volterra
integral equations with weakly singular kernels. Some lemmas useful for estab-
lishing the convergence result will be provided in Section 3. The convergence
analysis for both spectral and pseudo-spectral Jacobi-Galerkin methods will be
given in Section 4. Numerical results will be carried out in Section 5, which
will be used to verify the theoretical result obtained in Section 4. Finally, in
Section 6, we end with conclusion and future work.

2. Spectral and pseudo-spectral Galerkin methods

For the sake of applying the theory of orthogonal polynomials, we use the
change of variable

t =
1

2
T (1 + x), x =

2t

T
− 1,

τ =
1

2
T (1 + s), s =

2τ

T
− 1,

and let

u(x) = y(
1

2
T (1 + x)), g(x) = f(

1

2
T (1 + x)),

k(x, s) =

(
T

2

)1−γ

K(
1

2
T (1 + x)

1

2
T (1 + s)).

Then we get the following one dimension VIEs with weakly singular kernel
defined on [−1, 1]

u(x) =

∫ x

−1

(x− s)−γk(x, s)u(s)ds+ g(x), 0 < γ < 1, x ∈ Λ := [−1, 1].(2)

We formulate the Jacobi-spectral Galerkin schemes and investigate the global
convergence properties for the problem (2). For this purpose, we first define a



JACOBI SPECTRAL GALERKIN METHODS FOR VIES 249

linear integral operator G : C(Λ) → C(Λ) by

(Gφ)(x) :=

∫ x

−1

(x− s)−γk(x, s)φ(s)ds.

Then, the problem (2) reads: find u = u(x) such that

u(x) = (Gu)(x) + g(x), x ∈ Λ(3)

and its weak form is to find u ∈ L2(Λ) such that

(u, v) = (Gu, v) + (g, v), ∀v ∈ L2(Λ),(4)

where (·, ·) denotes the usual inner product in the L2-space.
Let us demonstrate the numerical implementation of the spectral Jacobi-

Galerkin approach first. Denote by N the set of all nonnegative integers. For
any N ∈ N, PN denotes the set of all algebraic polynomials of degree at most N
in Λ, φj(x) is the j-th Jacobi polynomial corresponding to the weight function
ωα,β(x) = (1− x)α(1 + x)β . As a result,

PN = span{φ0(x), φ1(x), . . . , φN (x)}.

Our spectral Jacobi-Galerkin approximation of (3) is now defined as: Find
uN ∈ PN such that

(uN , vN )ωα,β = (GuN , vN )ωα,β + (g, vN )ωα,β , ∀v ∈ PN ,(5)

where

(u, v)ωα,β =

∫ 1

−1

u(x)v(x)ωα,β(x)dx

is the continuous inner product. Set uN (x) =
∑N

j=0 ξjφj(x). Substituting it

into (5) and taking vN = φi(x), we obtain

N∑

j=0

ξj(φi, φj)ωα,β =

N∑

j=0

ξj(φi, Gφj)ωα,β +

N∑

j=0

(φi, g)ωα,β ,(6)

which leads to an equation of the matrix form

Aξ = Bξ + C,(7)

where

ξ = [ξ0, ξ1, . . . , ξN ]T , Ai,j = (φi, φj)ωα,β ,

Bi,j = (φi, Gφj)ωα,β , Ci = (φi, g)ωα,β .

Next we propose the pseudo-spectral Jacobi-Galerkin method. Set

s(x, θ) =
1 + x

2
θ +

x− 1

2
, −1 ≤ θ ≤ 1,
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it is clear that

(8)

Gu(x) =

∫ x

−1

(x− s)−γk(x, s)u(s)ds

=

∫ 1

−1

(1− θ)−γ k̃(x, s(x, θ))u(s(x, θ))dθ

with

k̃(x, s(x, θ)) =

(
1 + x

2

)1−γ

k(x, s(x, θ)).

Using (N + 1)-point Gauss quadrature formula to approximate (8) yields

(9) Gu(x) ≈ GNu(x) :=

N∑

k=0

k̃(x, s(x, θk))u(s(x, θk))ω
−γ,0
k ,

where {θk}Nk=0 are the (N + 1)-degree Jacobi-Gauss points corresponding to

the weights {ω−γ,0
k }Nk=0.

On the other hand, instead of the continuous inner product, the discrete
inner product will be implemented in (5) and (6), i.e.,

(10) (u, v)ωα,β ≈ (u, v)ωα,β ,N =

N∑

k=0

u(xk)v(xk)ω
α,β
k (xk).

As a result,

(u, v)ωα,β = (u, v)ωα,β ,N , if u, v ∈ P2N .

Substitute (9) and (10) into (5), the pseudo-spectral Jacobi-Galerkin method
is to find

ūN(x) =

N∑

j=0

ξ̄jφj(x)

such that

(ūN , vN )ωα,β ,N = (GN ūN , vN )ωα,β ,N + (g, vN )ωα,β ,N , ∀vN ∈ PN ,(11)

{ξ̄j}Nj=0 are determined by

N∑

j=0

ξ̄j(φi, φj)ωα,β ,N =
N∑

j=0

ξ̄j(φi, GNφj)ωα,β ,N + (φi, g)ωα,β ,N ,(12)

the matrix form

Āξ̄ = B̄ξ̄ + C̄,(13)

where

ξ̄ = [ξ̄0, ξ̄1, . . . , ξ̄N ]T , Āi,j = (φi, φj)ωα,β ,N ,

B̄i,j = (φi, Gφj)ωα,β ,N , C̄i = (φi, g)ωα,β,N .
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3. Some useful lemmas

In this section, we will provide some elementary lemmas, which are impor-
tant for the derivation of the main results in the subsequent section.

First we define the Jacobi orthogonal projection operator ΠN : L2
ω → PN

which satisfies

(14) (ΠNu, vN )ωα,β = (u, vN )ωα,β , ∀u ∈ L2
ωα,β , vN ∈ PN ,

L2
ωα,β(Λ) = {u : u is measurable and ‖u‖ωα,β < ∞},

‖u‖ωα,β =

(∫ 1

−1

u2(x)ωα,β(x)dx

) 1
2

.

Further, define

Hm
ωα,β (Λ) = {u : Dku ∈ L2

ωα,β(Λ), 0 ≤ k ≤ m},
equipped with the norm

‖u‖Hm

ω
α,β

=

(
m∑

k=0

∥∥∥∥
dku

dxk

∥∥∥∥
2

ωα,β

) 1
2

.

Lemma 3.1 (see [15]). Suppose that u ∈ Hm
ωα,β

(Λ) and m ≥ 1. Then

(15) ‖u−ΠNu‖ωα,β ≤ CN−m|u|Hm;N

ω
α,β

,

(16) ‖u−ΠNu‖∞ ≤ CN
3
4−m|u|Hm;N

ω
α,β

,

where |u|Hm;N

ω
α,β

(Λ) denotes the seminorm defined by

|u|Hm;N

ω
α,β

=




m∑

k=min(m,N+1)

∥∥∥∥
dku

dxk

∥∥∥∥
2

ωα,β




1/2

.

Lemma 3.2 (see [6]). Suppose that u ∈ L2
ωα,β

(Λ). Then

‖ΠNu‖ωα,β ≤ C‖u‖ωα,β ,

‖ΠNu‖∞ ≤ C‖u‖∞.

Lemma 3.3 (see [2]). Assume that an (N+1)-point Gauss quadrature formula

relative to the Jacobi weight is used to integrate the product uϕ, where u ∈
Hm(Λ) with I for some m ≥ 1 and ϕ ∈ PN . Then there exists a constant C
independent of N such that

(17)

∣∣∣∣
∫ 1

−1

u(x)ϕ(x)ωα,β(x)dx − (u, ϕ)ωα,β ,N

∣∣∣∣ ≤ CN−m|u|Hm,N

ω
α,β

‖ϕ‖ωα,β .
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Lemma 3.4 (see [2]). Assume that u ∈ Hm
ωα,β

(Λ), m ≥ 1 Iα,βN u denotes the

interpolation operator of u based on (N + 1)-degree Jacobi-Gauss points corre-

sponding to the weight function ωα,β(x) with −1 < α, β < 1. Then

‖u− Iα,βN u‖ωα,β ≤ CN−m|u|Hm,N

ω
α,β

,(18a)

‖u− Iα,βN u‖∞ ≤
{
CN

1
2−m logN |u|Hm,N

ω
c

, −1 ≤ α, β < − 1
2 ,

CNν+1−m|u|Hm,N

ω
c

, otherwise, ν = max(α, β),
(18b)

where ωc = ω− 1
2 ,−

1
2 denotes the Chebyshev weight function.

Lemma 3.5 (see [9]). For every bounded function u, there exists a constant

C, independent of u such that

‖Iα,βN u(xj)‖ωα,β ≤ C‖u‖∞,

where Iα,βN u(x) =
∑N

j=0 u(xj)Fj(x) is the Lagrange interpolation basis function

associated with (N +1)-degree Jabobi-Gauss points corresponding to the weight

function ωα,β(x).

Lemma 3.6 (see [9]). Assume that {Fj(x)}Nj=0 are the N -th degree Lagrange

basis polynomials associated with the Gauss points of the Jacobi polynomials.

Then

(19)

‖Iα,βN ‖∞ ≤ max
x∈[−1,1]

N∑

j=0

| Fj(x) |

=

{
O(logN), −1 < α, β ≤ − 1

2 ,

O(Nν+ 1
2 ), ν = max(α, β), otherwise.

Lemma 3.7 (see [11, 12]). For a nonnegative integer r and κ ∈ (0, 1), there
exists a constant Cr,κ > 0 such that for any function v ∈ Cr,κ([−1, 1]), there
exists a polynomial function TNv ∈ PN such that

(20) ‖v − TNv‖∞ ≤ Cr,κN
−(r+κ)‖v‖r,κ,

where ‖ · ‖r,κ is the standard norm in Cr,κ([−1, 1]), TN is a linear operator

from Cr,κ([−1, 1]) into PN , as stated in [11, 12].

Lemma 3.8 (see [5]). Let κ ∈ (0, 1) and let G be defined by

(Gv)(x) =

∫ x

−1

(x− τ)−µK(x, τ)v(τ)dτ.

Then, for any function v ∈ C([−1, 1]), there exists a positive constant C such

that
|Gv(x′)−Gv(x′′)|

|x′ − x′′| ≤ C max
x∈[−1,1]

|v(x)|,
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under the assumption that 0 < κ < 1− µ, for any x′, x′′ ∈ [−1, 1] and x′ 6= x′′.

This implies that

‖ Gv ‖0,κ≤ C max
x∈[−1,1]

|v(x)|, 0 < κ < 1− µ.

Lemma 3.9 ([7], Gronwall inequality). Suppose L ≥ 0 and G(x) is a non-

negative, locally integrable function defined on [−1, 1] satisfying

E(x) ≤ G(x) + L

∫ x

−1

E(τ)dτ.

Then there exists a constant C such that

‖E‖Lp(I) ≤ L‖G‖Lp(I), p ≥ 1.

Here and below, C denotes a positive constant which is independent of N ,
and whose particular meaning will become clear by the context in which it
arises.

4. Convergence analysis for spectral and pseudo-spectral
Jacobi-Galerkin method

According to (5) and the definition of the projection operator ΠN , the spec-
tral Jacobi-Galerkin solution uN satisfies

uN = ΠNGuN +ΠNg.(21)

Theorem 4.1. Suppose that uN is the spectral Jacobi-Galerkin solution deter-

mined by (5), if the solution u of (2) satisfies u ∈ Hm,N
ωα,β

(Λ), then we have the

following error estimate

‖u− uN‖∞ ≤ CN
3
4−m|u|Hm,N

ω
α,β

,

‖u− uN‖ωα,β ≤ CN−m
(
CN

3
4−κ + 1

)
|u|Hm,N

ω
α,β

, κ ∈ (0, γ).
(22)

Proof. Subtracting (21) from (3), yields

u− uN = Gu −ΠNGuN + g −ΠNg.(23)

Set e = u− uN , direct computation shows that

Gu−ΠNGuN

= Gu−ΠNGu +ΠNG(u− uN )

= Gu−ΠNGu +G(u− uN )− [G(u − uN)−ΠNG(u − uN )]

= (u− g)−ΠN (u− g) +G(u − uN)− [G(u − uN)−ΠNG(u − uN)]

= (u− g)−ΠN (u− g) +Ge − [Ge−ΠNGe].

(24)
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The insertion of (24) into (23) yields

e(x) =

∫ x

−1

(x− s)−γk(x, s)e(s)ds+ u−ΠNu+ [ΠNGe−Ge]

=

∫ x

−1

(x− s)−γk(x, s)e(s)ds+ I1 + I2,

(25)

where
I1 = u−ΠNu, I2 = ΠNGe−Ge.

It follows from the Gronwall inequality that

‖ e(x) ‖∞≤ C

2∑

i=1

‖ Ii ‖∞ .(26)

By Lemma 3.1,

‖I1‖∞ ≤ CN
3
4−m|u|Hm;N

ω
α,β

,(27)

In the virtue of Lemma 3.2, Lemma 3.7 and Lemma 3.8,

‖ I2 ‖∞ =‖ (ΠN − I)Ge ‖∞
=‖ (ΠN − I)(Ge − TNGe) ‖∞
≤‖ ΠN (Ge − TNGe) ‖∞ + ‖ Ge − TNGe ‖∞
≤ C ‖ Ge − TNGe ‖∞
≤ CN−κ ‖ Ge ‖0,κ, κ ∈ (0, 1− µ) = (0, γ)

≤ CN−κ ‖ e ‖∞ .

(28)

Combing (26), (27) and (28), we obtain, when N is large enough,

‖u− uN‖∞ ≤ CN
3
4−m|u|Hm;N

ω
α,β

.

Now we investigate the ‖ · ‖ωα,β -error estimate. It follows from (25) and
Gronwall inequality Lemma 3.9 that

‖ e(x) ‖ωα,β≤ C

2∑

i=1

‖ Ii ‖ωα,β .(29)

Due to Lemma 3.1,

‖I1‖ωα,β ≤ CN−m|u|Hm,N

ω
α,β

.(30)

It follows from Lemma 3.2, Lemma 3.7 and Lemma 3.8 that

‖ I2 ‖ωα,β =‖ (ΠN − I)Ge ‖ωα,β

=‖ (ΠN − I)(Ge − TNGe) ‖ωα,β

≤‖ ΠN (Ge − TNGe) ‖ωα,β + ‖ Ge − TNGe ‖ωα,β(31)

≤ C ‖ Ge − TNGe ‖∞
≤ CN−κ ‖ Ge ‖0,κ
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≤ CN−κ ‖ e ‖∞, κ ∈ (0, 1− µ) = (0, γ).

The combination of (29), (30) and (31) yields,

‖u− uN‖ωα,β ≤ CN−m
(
1 +N

3
4−κ

)
|u|Hm,N

ω
α,β

,

provided N is large enough. Hence, the theorem is proved. �

As Iα,βN is the interpolation operator which is based on the (N + 1)-degree
Jacobi-Guass points, in terms of (11), the pseudo-spectral Galerkin solution
ūN satisfies

(ūN , vN )ωα,β = (Iα,βN GN ūN , vN )ωα,β + (Iα,βN g, vN )ωα,β .(32)

Let

I(x) = GūN −GN ūN(33)

=

∫ 1

−1

(1− θ)−γ k̃(x, s(x, θ))uN (s(x, θ))dθ

−
N∑

k=0

k̃(x, s(x, θk))uN (s(x, θk))ω
−γ,0
k .

Combing (32) and (33), yields

(34) (ūN , vN )ωα,β =(Iα,βN GūN−Iα,βN I(x), vN )ωα,β+(Iα,βN g, vN )ωα,β , ∀vN ∈PN ,

which gives rise to

ūN = Iα,βN GūN − Iα,βN I(x) + Iα,βN g.(35)

We first consider an auxiliary problem, i.e., we want to find ûN ∈ PN , such
that

(ûN , vN )ωα,β ,N = (GûN , vN )ωα,β ,N + (g, vN )ωα,β ,N , ∀vN ∈ PN .(36)

In terms of the definition of Iα,βN , (36) can be written as

(ûN , vN )ωα,β = (Iα,βN GûN , vN )ωα,β + (Iα,βN g, vN )ωα,β , ∀vN ∈ PN ,(37)

which is equivalent to

ûN = Iα,βN GûN + Iα,βN g.(38)

Lemma 4.2. Suppose ûN is determined by (38), −1 ≤ ν = max(α, β) ≤
min(0, 1

2 −γ) and 0 < κ < 1−γ, if the solution u of (2) satisfies u ∈ Hm,N
ωα,β

(Λ),
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we have

‖u− ûN‖∞ ≤
{
CN

1
2−m logN |u|Hm,N

ω
c

, −1 ≤ ν < − 1
2 ,

CNν+1−m|u|Hm,N

ω
c

, − 1
2 ≤ ν < min(0, 1

2 − γ).

‖u− ûN‖ωα,β ≤





CN−m
(
|u|Hm,N

ω
c

+ logNN
1
2−κ|u|Hm;N

ω
α,β

)
,

−1 ≤ ν < − 1
2 ,

CN−m
(
|u|Hm,N

ω
c

+Nν+1−κ|u|Hm;N

ω
α,β

)
,

− 1
2 ≤ ν < min(0, γ − 1

2 ).

(39)

Proof. Subtracting (38) from (3), yields

u− ûN = Gu− Iα,βN GuN + g − Iα,βN g.(40)

Set ε = u− ûN , direct computation shows that

Gu− Iα,βN GûN

= Gu− Iα,βN Gu+ (Gu−GûN )−
[
(Gu −GûN)− Iα,βN (Gu−GûN )

]

= (u− g)− Iα,βN (u− g) +Gε− [Gε− Iα,βN Gε]

= Iα,βN u− u+ Iα,βN g − g +Gε− [Gε− Iα,βN Gε].

(41)

The insertion of (41) into (40) yields

ε =

∫ x

−1

(x− s)−γk(x, s)ε(s)ds+ J1 + J2,(42)

where
J1 = u− Iα,βN u, J2 = Iα,βN Gε−Gε.

It follows from Gronwall inequality that

‖ε(x)‖∞ ≤ C (‖J1‖∞ + ‖J2‖∞) .(43)

Due to Lemma 3.4,

‖J1‖∞ = ‖u− Iα,βN u‖∞ ≤
{
CN

1
2−m logN |u|Hm,N

ω
c

, −1 ≤ ν < − 1
2 ,

CNν+1−m|u|Hm,N

ω
c

, otherwise.
(44)

By virtue of Lemma 3.7, Lamme 3.8 and Lemma 3.6, we have

‖ J2 ‖∞= ‖ (Iα,βN − I)Gε ‖∞

(45)

= ‖ (Iα,βN − I)(Gε− TNGε) ‖∞
≤ ‖ Iα,βN (Gε− TNGε) ‖∞ + ‖ Gε− TNGε ‖∞

≤
{
O(logN) ‖ Gε− TNGε ‖∞, −1 < ν ≤ − 1

2 ,

O(Nν+ 1
2 ) ‖ Gε− TNGε ‖∞, otherwise,
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≤
{
C logNN−κ ‖ Gε ‖0,κ, −1 < ν ≤ − 1

2 ,

CNν+ 1
2−κ ‖ Gε ‖0,κ, − 1

2 ≤ ν < min(0, 1
2 − γ),

0 < κ < 1− γ,

≤
{
C logNN−κ ‖ ε ‖∞, −1 < ν ≤ − 1

2 ,

CNν+ 1
2−κ ‖ ε ‖∞, − 1

2 ≤ ν < min(0, 12 − γ),
0 < κ < 1− γ.

Combing (43), (44) and (45) we obtain, when N is large enough,

‖u− ûN‖∞ ≤
{
CN

1
2−m logN |u|Hm,N

ω
c

, −1 ≤ ν < − 1
2 ,

CNν+1−m|u|Hm,N

ω
c

, − 1
2 ≤ ν < min(0, 12 − γ).

Now we investigate the ‖ · ‖ωα,β -error estimate. It follows from (42) and the
Gronwall inequality that

‖ε(x)‖ωα,β ≤ C (‖J1‖ωα,β + ‖J2‖ωα,β ) .(46)

By Lemma 3.4,

‖J1‖ωα,β = ‖u− Iα,βN u‖ωα,β ≤ CN−m|u|Hm;N

ω
α,β

.(47)

It follows from Lemma 3.5, Lemma 3.7 and Lemma 3.8 that

‖ J2 ‖ωα,β = ‖ (Iα,βN − I)Gε ‖ωα,β

= ‖ (Iα,βN − I)(Gε− TNGε) ‖ωα,β

≤ ‖ Iα,βN (Gε− TNGε) ‖ωα,β + ‖ Gε− TNGε ‖ωα,β

≤ C ‖ Gε− TNGε ‖∞
≤ CN−κ ‖ ε ‖∞, 1 < κ < 1− γ.

(48)

Combing (46), (47) and (48) we obtain, when N is large enough,

‖u− ûN‖ωα,β ≤





CN−m
(
|u|Hm,N

ω
c

+ logNN
1
2−κ|u|Hm;N

ω
α,β

)
,

−1 ≤ ν < − 1
2 ,

CN−m
(
|u|Hm,N

ω
c

+Nν+1−κ|u|Hm;N

ω
α,β

)
,

− 1
2 ≤ ν < min(0, γ − 1

2 ).

This completes the proof of the lemma. �

Theorem 4.3. Suppose that the solution u of (2) satisfies u ∈ Hm,N
ωα,β

(Λ),

−1 ≤ ν = max(α, β) ≤ min(0, 1
2 −γ) and 0 < κ < 1−γ, for the pseudo spectral

Jacobi-Galerkin solution ūN , such that (11) holds, we have

‖u− ūN‖∞(49)

≤




CN−m logN

[
N

1
2 |u|Hm,N

ω
c

+K∗‖u‖∞
]
, −1 ≤ ν < − 1

2 ,

CNν+ 1
2−m

[
N

1
2 |u|Hm,N

ω
c

+K∗‖u‖∞
]
, − 1

2 ≤ ν ≤ min(0, 1
2 − γ),

‖u− ūN‖ωα,β
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≤





CN−m
[
(1 + logNN−κ)K∗‖u‖∞ + |u|Hm,N

ω
c

+ logNN
1
2−κ|u|Hm;N

ω
α,β

]
,

−1 ≤ ν < − 1
2 ,

CN−m
[(

1 +Nν+ 1
2−κ

)
K∗‖u‖∞ + |u|Hm,N

ω
c

+Nν+1−κ|u|Hm;N

ω
α,β

]
,

− 1
2 ≤ ν ≤ min(0, 1

2 − γ),

where K∗ = maxx∈(−1,1) |k(x, s(x, ·))|Hm;N

ω
−γ,0

.

Proof. Now subtracting (35) from (38) leads to

ūN − ûN = Iα,βN (GūN −GûN )− Iα,βN I(x),(50)

which can be simplified as, by setting E = ūN − ûN

E = Iα,βN GE − Iα,βN I(x)

= GE −GE + Iα,βN GE − Iα,βN I(x)

= GE +Q1 − Iα,βN I(x)

(51)

with Q1 = Iα,βN GE −GE. It follows from the Gronwall inequality that

‖E‖∞ = ‖Q1‖∞ + ‖Iα,βN I(x)‖∞.(52)

Similarly to (45), we have

‖Q1‖∞ = ‖Iα,βN GE −GE‖∞

≤
{
CN−κ logN‖E‖∞, −1 ≤ µ < − 1

2 ,

CNν+ 1
2−κ‖E‖∞, − 1

2 ≤ ν < min(0, 1
2 − γ),

with 0 < κ < 1− γ.
Using Lemma 3.3 and Lemma 3.6, we have

‖Iα,βN I(x)‖∞ ≤





C logN max
x∈(−1,1)

I(x), −1 ≤ ν < − 1
2 ,

CNν+ 1
2 max
x∈(−1,1)

I(x), − 1
2 ≤ ν < 0,

≤




CN−m logN maxx∈(−1,1) |k(x, s(x, ·))|Hm;N

ω
−γ,0

‖ūN‖ω−γ,0 , −1 ≤ ν < − 1
2 ,

CN−mNν+ 1
2 max
x∈(−1,1)

|k(x, s(x, ·))|Hm;N

ω
−γ,0

‖ūN‖ω−γ,0 , − 1
2 ≤ ν < 0,

≤






CN−m logN max
x∈(−1,1)

|k(x, s(x, ·))|Hm;N

ω
−γ,0

‖ūN‖∞, −1 ≤ ν < − 1
2 ,

CN−mNν+ 1
2 max
x∈(−1,1)

|k(x, s(x, ·))|Hm;N

ω
−γ,0

‖ūN‖∞, − 1
2 ≤ ν < 0,

≤






CN−m logN max
x∈(−1,1)

|k(x, s(x, ·))|Hm;N

ω
−γ,0

(‖u‖∞ + ‖E‖∞) , −1 ≤ ν < − 1
2 ,

CN−mNν+ 1
2 max
x∈(−1,1)

|k(x, s(x, ·))|Hm;N

ω
−γ,0

(‖u‖∞ + ‖E‖∞) , − 1
2 ≤ ν < 0.
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Set K∗ = maxx∈(−1,1) |k(x, s(x, ·))|Hm;N

ω
−γ,0 (Λ), we now obtain the estimate E by

using (52)

‖E‖∞ ≤
{
CN−m logNK∗‖u‖∞, −1 ≤ ν < − 1

2 ,

CNν+ 1
2−mK∗‖u‖∞, − 1

2 ≤ ν < min(0, 1
2 − γ).

(53)

Next, we will give the error estimates in ‖ · ‖ωα,β . It follows from (51) and
the Gronwall inequality that

‖E‖ωα,β = ‖Q1‖ωα,β + ‖Iα,βN I(x)‖ωα,β .(54)

‖Q1‖ωα,β can be established in a similar way as (48),

‖Q1‖ωα,β = ‖Iα,βN GE −GE‖ωα,β ≤ CN−κ‖E‖∞, 0 < κ < 1− γ.

Using Lemma 3.3 and Lemma 3.5, we have

‖Iα,βN I(x)‖ωα,β ≤ C‖I(x)‖ωα,β ≤ CN−mK∗‖ûN‖ω−γ,0

≤ CN−mK∗ (‖u‖∞ + ‖E‖∞) .

By the convergence result in (53) (m = 1), we have

‖E‖∞ ≤ ‖u‖∞
for sufficiently large N. So that

‖Iα,βN I(x)‖ωα,β ≤ CN−mK∗‖u‖∞.

We obtain, when N is large enough,

‖E‖ωα,β ≤
{
CN−m (1 + logNN−κ)K∗‖u‖∞, −1 ≤ ν < − 1

2 ,

CN−m
(
1 +Nν+ 1

2−κ
)
K∗‖u‖∞, − 1

2 ≤ ν < min(0, 12 − γ).

(55)

Finally, it follows from triangular inequality,

‖u− ūN‖∞ ≤ ‖u− ûN‖∞ + ‖ûN − ūN‖∞,

‖u− ūN‖ωα,β ≤ ‖u− ûN‖ωα,β + ‖ûN − ūN‖ωα,β ,

as well as Lemma 4.2, (53) and (55), we can obtain the desired estimated
(49). �

5. Numerical experiments

We give numerical examples to confirm our analysis. To examine the accu-
racy of the results, ‖·‖∞ and ‖·‖ωα,β errors are employed to assess the efficiency
of the method. All the calculations are supported by the software Matlab.

Example 5.1. We consider the following the linear weakly singular Volterra
integral equation (1) with

y(t) = f(t)−
∫ t

0

(t− τ)−γy(τ)dτ, 0 ≤ t ≤ 6, 0 < γ < 1,
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Figure 1. Example 5.1: Comparison between approximate
solution of pseudo-spectral Jacobi-Galerkin method and exact
solution of y(t) = t−γ sin(t) with γ = 0.8 (left). The errors
versus the number of collocation points in L∞ and weighted
L2 norms (right).

with

f(t) =
sin(t)

tγ
+ π

1
2 t

1
2−γΓ(1− γ)B(

1

2
− γ,

t

2
) sin(

t

2
),

where B(·, ·) is the Bessel function defined by

B(θ, ϑ) =

(
ϑ

2

)θ ∞∑

k=0

(
−ϑ2

4

)k

k!Γ(θ + k + 1)
,

The corresponding exact solution is given by y(t) = t−γ sin(t).

We have reported the obtained numerical results of pseudo-spectral Jacobi-
Galerkin for N = 16 and γ = 0.8 in Figure 1 (left). We can see that the nu-
merical result of pseudo-spectral Jacobi-Galerkin approximation solutions are
in good agreement with exact solution y(t) = t−γ sin(t). Figure 1 (right) illus-
trates L∞ and weighted L2

ω errors of pseudo-spectral Jacobi-Galerkin method
versus the number N of the steps. Clearly, these figures show the exponential
rate of convergence predicted by the proposed method.

In practice, many Volterra equations are usually nonlinear. However, the
nonlinearity adds rather little to the difficulty of obtaining a numerical solution.
The methods described above remain applicable. Below we will provide a
numerical example using the spectral technique proposed in this work.

Example 5.2. Consider the following the nonlinear weakly singular Volterra
integral equation (1) with

y(t) = f(t)−
∫ t

0

(t− τ)−γ tan(y(t))dτ, 0 ≤ t ≤ 2, 0 < γ < 1,
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Figure 2. Example 5.2: Comparison between approximate
solution of pseudo-spectral Jacobi-Galerkin method and exact
solution of y(t) = a tan(t1−γ) with γ = 0.4 (left). The errors
versus the number of collocation points in L∞ and weighted
L2 norms (right).

with

f(t) = tγ arctan(t1−γ) +
√
πtγ

(
t

2

)2−2γ
Γ(1− γ)

Γ(32 − γ)
.

This example has a smooth solution y(t) = arctan(t1−γ).

This is a nonlinear problem. The numerical scheme leads to a nonlinear sys-
tem, and a proper solver for the nonlinear system (e.g., Newton method) should
be used. Figure 2 (left) presents the approximate and exact solution with
γ = 0.4, which are found in excellent agreement. Next, Figure 2 (right) illus-
trates the L∞ and weighted L2

ω errors of the pseudo-spectral-Galerkin method.
These results indicate that the spectral accuracy is obtained for this problem.

6. Conclusions and future work

This work has been concerned with the spectral and pseudo-spectral Jacobi-
Galerkin analysis of the Volterra integral equations with weakly singular kernel.
The most important contribution of this work is that we are able to demonstrate
rigorously that the errors of spectral approximations decay exponentially in
both infinity and weighted norms, which is a desired feature for a spectral
method.

Although in this work our convergence theory does not cover the nonlinear
case, the methods described above remain applicable, it will be possible to
extend the results of this paper to nonlinear case which will be the subject of
our future work.
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