Bull. Korean Math. Soc. 38 (2001), No. 3, pp. 463474

RODRIGUES TYPE FORMULA FOR MULTI-VARIATE
ORTHOGONAL POLYNOMIALS

Yong Ju Kmm, KiL Hyun KwoN, AND JEONG KEUN LEE

ABsTRACT. We find Rodrigues type formula for multi-variate orthog-
onal polynomial solutions of second order partial differential equa-
tions.

1. Introduction and preliminaries

Rodrigues formula for classical orthogonal polynomials in one variable
is well developed in [1, 2, 6].

In this work, we are concerned with Rodrigues type formula for multi-
variate orthogonal polynomial solutions of a second order partial differ-
ential equation of spectral type in d variables:

d 0’u d du
i,j=1 i=1
where d > 2 is an integer.

Let Ny be the set of nonnegative integers and R the set of real num-
bers. For a = (a3, -+ ,qq) € Ng and x = (21, - ,z4) € R% we write
x* =gz z5 and ja| = g +ag + -+ + aq. For any integer n € Ny,
let TT¢ be the space of real polynomials in d variables of (total} degree
< n and II¢ the space of all real polynomials in d variables. Also, let 2

be the number of monomials of degree exactly n. Then

. n+d n+d—1
dlmﬂi=( d ) and rﬁ:( )

n
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By a polynomial system(PS), we mean a sequence of polynomials

{¢ﬂ (x) }(xENg

such that deg(d,) = la| and {¢a}|a|=n are linearly independent modulo
I1¢_, for n € Ny (T1¢; = {0}).
For n € Ny, and x € R?, and any PS {qba(x)}aeNg, we write

x" =[x |o| = n]" and & :=[dq:|a|] =n]"

which are vectors in R’% whose elements are arranged according to the
lexicographical order of {a € N¢ : |aj = n} and use also {®,}3 to
denote the PS {ﬁf’a}aeNg-

For a matrix ¥ = [¢4]iZ, 2, of polynomials in ¢ and a moment
functional(i.e., a linear functional) o on I1%, we let

(0, %) = [{o,¥3;)]iZ0 520-
A PS {P,}2, is said to be monic if
Po(x) = x™ modulo M¢_,, n & Ny.

For any PS {®,}2,, where ®, = A,x" modulo II¢_;, A,, n > 0,
is an r¢ x rd constant non-singular matrix. We then call the monic PS
{P,}2 4 the normalization of {®,}%%,, where P, := A71®,.

For any moment functional o on IT%, we let

do . 0] .
<5&;:¢>_ (0’, 6.’1%)’ 1_112} 1d:

and

{Yo,¢) = (0,9¢)

for any polynomials ¢(x) and (x).

DerINITION 1.1. ([4]) A PS {®,}22, is a weak orthogonal polynomial
system (WOPS) if there is a non-zero moment functional & such that

(0,8,00) = Kpbpy if m#n and m,n € Ny

where K, = {(0,®,9I),n € Ny, is an 7¢ x ¢ constant diagonal ma-

trix. If furthermore K,,,n € Ny, is nonsingular (respectively, positive-
definite) diagonal matrix, we call {®,}52, an orthogonal polynomial
system {OPS) (respectively, a positive-definite OPS). In this case, we
say that {®,}2, is a WOPS or an OPS relative to o.
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A PS {®,}2, is a WOPS relative to ¢ if and only if (g, ®,R) =0
for any polynomial R{x) € II¢_,.

For any PS {®,}52,, there is a unique moment functional o, called
the canonical moment functional of {®,}%,, defined by the conditions

{g,1) =1 and {(o,®,)=0,n2>1

Note that if {®,}22, is a WOPS relative to o, then ¢ must be a non-
zero constant multiple of the canonical moment functional of {®,}52,.

DEFINITION 1.2. A moment functional ¢ is quasi-definite (respectively,
positive-definite) if there is an OPS (respectively, a positive-definite
OPS) relative to o.

The following was proved in [4](see also [5]).

PropPOSITION 1.1. For a moment functional o # 0, the following
statements are all equivalent:
(i) o is quasi-definite (respeciively, positive-definite);

(ii) There is a unique monic WOPS {P,}22, relative to o;

(iii) There is a monic WOPS {P,};2, relative to ¢ such that H, =
(o,P,PT), n € Ny, is a nonsingular (respectively, positive-definite)
symmetric matrix;

(iv) D, is nonsingular (respectively, positive-definite), where

D, = [aa+3]ir;|:01|1;|:0, n € Ny,

and o, = {0,x%), a € N4, are the moments of 0.

Let {P,}52, be the monic WOPS relative to a quasi-definite moment
functional ¢ and A, the rg x 7% nonsingular matrix such that A, H, Al =
(o, (AP )(A.P,)T) is diagonal. Then {®, = A,Pn}2, is an OPS
relative to o. It is also easy(cf. [8]) to see that o is positive-definite if

and only if (7, ¢*) > 0 for any polynomial ¢(x) # 0.

LEMMA 1.2. (see Lemma 2.2 in [3]) Let ¢ and 7 be moment func-
tionals and R(x) a polynomial in I1%. Then
. . .0 .
(i) o =0 if and on1y1f£ =0 forsomei=1,-- ,d.
1

Assume that o is quasi-definite and let {®,}52, be an OPS relative to
o. Then

(ii) R(x)o =0 if and only if R(x) = 0;
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(ili) (7,¢a) =0, |&| > k (k € No) if and only if 7 = p(x)o for some
polynomial ¢(x) € TI4.

Proof. (i) and (ii) are obvious.
(iii) <: It is trivial from the orthogonality of {(I)n} 2 relative to o.

(ii1) =: Consider a moment functional 7= (JEOC ;®;)o, whereC; =
[Caljaj=j» 0 < j £k, are arbitrary constant row vectors. Then

& .
0 if n>k
q) @T — y
(7, &) = ; 7 { (0,2, 81)CT, if 0<n<k
Hence, if we take C, = {r,®,)" H1, 0 < n <k, then (r,®,) = (F, ,),
n € Np, so that 7 =T. |

2. Differential operator L[]
We now recall quickly results from [3], which we need to develop Ro-

drigues type formula. If the differential equation (1.1) has a PS {$,}%2,
as solutions, then it must be of the form

d
Ll = > As(0) 5 8%+2 )

',jAl i=
(21) 62 d Su
= le (aw;mj + szjwk + cw) 803, ; 9z; + hy )8 v,
=AU, NE No,

where A, = an(n — 1) + gn. Without the loss of generality, we may
assume that the matrix [A;(x)}¢,_; is symmetric, that is, A;;(x} =
d
Aji(x), 1 <14, < d. We also assume that E |Ai;| # 0 and |a|+]g| #0
i,j=0
since otherwise the differential equation (2.1} can not have an OPS as
solutions. The differential operator L[} in (2.1) is called to be admissible
if A # An for m # n or equivalently an + g # 0 for n > 0. It is then
easy to see (cf. [3, 4]) that the differential equation (2.1) is admissible
if and only if the differential equation (2.1) has a unique monic PS as
solutions.

i4=1
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From now on, we always assume that L[| is admissible.

PROPOSITION 2.1. (see Theorem 3.7 in [3]) Let o be the canonical
moment functional of a PS {®,}°2, of solutions to the differential equa-
tion (2.1). Then the following statements are all equivalent :

(i) {®}2, is 2 WOPS relative to o;

d
, , 3(A o) : ,
(il) M;[o] := ;W ~Bio=0, i=1,---,d
(iii) {(o,2:®,) =0, n>2andi=1,---,d.

We say that the differential operator L[] is symmetric if L[] = L*[]
where L*[| is the formal Lagrange adjoint of L[-] defined by

= Z FAw) i 8(B;u)
Ozi0z; = Omi
We also say that L[] is symmetrlzable if there is a non-zero C*—function
s(x) in some open subset of R? such that sL[] is symmetric. In this case,
we call s(x) a symmetry factor of L[-]. In fact(see [3]), a C%—function

$(x) (# 0) is a symmetry factor of L[] if and only if s(x) is a non-zero
solution of the following so-called symmetry equations :

d
e2) M=) peo i=1
o O

PROPOSITION 2.2. (see Lemma 3.9 and Theorem 3.11 in [3]) If the
admissible differential equation (2.1) has an OPS {®$,}°2, as solutions,
then |[A;}¢;_;| # O in any non-empty open subset of R? and L[] is
symimetrizable.

3. Rodrigues type formula

From now on, we may and shall assume (see Proposition 2.2) that
|[4]¢,-,{ # 0 and the differential operator L[] in (2.1) is symmetrizable.
Let s(x)(# 0) be a symmetry factor of L[-]. That is, s(x) is any non-zero
solution of the symmetry equations

(3.1) M;[s] = Z(Aijs)a:j - Bis=0, i=1,---,d.
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Solving the equations (3.1) for sz, ¢ =1,--- ,d, yields
N Os

oz;
where ¢ = |{Aij]§{j=1| and 3 is the determinant of the matrix obtained

(3.2) =@s, i=1,---,d

from [Aﬂ-j};{j=1 by replacing i-th column of [Aij];{J-:l with

-3 2 me- > 5

i=1 j=1

Note that deg(a) < 2d — 1 and deg(8') <2d -2, i=1,--- ,d.
Decompose A;;, 1 <4,j < d, into

Ait‘:DiD%, i=1:"'1d:
Ay =DiED], 1<i,j<d, andi#j

where DI 20, i =1,--+ ,d. Then

(3.3)

d
1 d f
a=D}- Diog =[] D],
j=1

g =D}..-piipitl.. pigi = ﬁUHD i=1,---,d

J#@
where

and fori=1,--. ,d,

Bi=1(mu)], mu= - on=l
SIS s
DYE*, k#i,4
Then the equations (3.2} become
Os i .
(34) pia_ﬂ'.:t‘ZﬁOS, ’531,-“ )d

where p; = Dicg, i =1, - ,d.
Note that for each ¢ =1
deg(8y) < 2d — 2.

- 7d7 yZ) $ 0 and deg(p‘&) < 2d — 1:
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PROPOSITION 3.1. Let o be the canonical moment functional of a PS
{®,}22, satisfying the differential equation (2.1). Assumne that

(3.5) ODi g igjamdi<ij<d
aiﬂj
and
do .
. im— = o, i=1,--,d
(3.6 P&Ei Boo, 1

Then for any multi-index y € Ng

(3.7) 6”’[(1511}1-1')0] = 1,0

where ., (x} is a polynomial of degree < (2d — 2)|v| and

(3.8) (X (X)) =0

for any v € Ng with 0 < |7f| < || and - # .
If moreover, o is quasi-definite and

(3.9) deg(p;) <2 and deg(8)) <1, i=1,--- .4,

then {¥,}2, with U, = [1, : |v| =n|T is a WOPS relative to o and
satisfies the differential equation (2.1).

Proof. Assume that the conditions (3.5) and (3.6) hold. Then for any
polynomial m(x) and any multi-index v = (v, - ,v4) € N§, we have,
foreachi=1,.--,d with ~; £ 0

d(ro H(]":l ij) . d
——-————8] I — opl | | p;-“,
T e
J#
where

3pi i 8(10

DS
8$i + (l"YI 'Yz)ﬂ- lamt_
Since deg(m;) < deg(r) + max{deg(p;) — 1,deg(8})} < deg(nm) + 2d — 2,
the first conclusion follows easily by induction on v € Ng. If moreover,
the condition (3.9) holds, we have deg(¢,) < |y|. Now, for all v € N¢

T = YT + pima, + By
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with 0 < [y'| < |y| and v # 7
d
(o, X" ) = (y0,x7 ) = (@[ [ )0l x")
i=1

d
-(([IpMe,0x") =0
i=1
from which (3.8) follows.

Next we further assume that ¢ is quasi-definite and the condition
(3.9) holds. We first claim that deg(i) = |y} and {o,x"%,) # 0 for
v € N&. Assume that deg(z,) < |y| — 1 for some fy € N with |y| > 1.
Then ¥, = 0 since {o, m,} = 0 for any n(x) in H| -1 by (3.8) and &

is quasi-definite. Hence &"[([]%, p})o] = 0 so that pi(x) = 0 for some
i with 1 < 4 < d which is a contradiction. Therefore deg(ty) = v and
(0,%7%,) # 0 for all v € N by (3.8).

We now claim that for each n > 0, {3, },— are linearly independent
modulo IT¢_; so that {¥,}52, is a PS. For any integer n > 1, let C,, v €
N¢ with |y| = n, be constants such that ¢(x) = Y. Cyy is of degree

[7l=n
< n—1. Then ¢(x) = 0 since (o, p(x)m(x)) = 0 for any m € II¢_, by
(3.8). Then, for all v € N& with |y =n
(o, $(x)x") = Cy(o, ¥yx7) = 0
so that C, = 0, v € N¢ with |y| = n by the first claim. Hence {¥y}|yj=n
are linearly independent modulo IT¢_, and so {¥,}2, is a WOPS rela-
tive to o by (3.8).

Finally, in order to see that {¥,}52, satisfy the differential equation
(2.1), we let {P,}3° ; and {Q,}52, be the normalizations of {®,}5, and
{T,}52, respectively. Then {P,}22, and {Q,}5, are monic WOPS’s
relative to o so that P, = @y, n > 0, by Proposition 1.1. Since {®,,}2°,

satisfy the differential equation (2.1), {Q,}32, and so {¥,}32, also sat-
isfy the differential equation (2.1). C

In passing, we note: The moment functional ¢ in Proposition 3.1 satis-
fies (3.1) and so (3.2) (see Proposition 2.1). However we can not drop

the condition (3.6) since the condition (3.2) for o : p; . = Bio (i =

6‘
1,--- ,d) does not necessarily imply the condition (3.6).

From Proposition 3.1, we now have:
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THEOREM 3.2. Assume that the differential equation (2.1) has an
OPS {®,}°°, relative to o as solutions. If the conditions (3.5), (3.6),
and (3.9) hold, then the PS {¥,}2, with ¥y, = [ty : |y| = n|" defined
by (3.7) is a WOPS relative to ¢ and satisfies the differential equation

(2.1).

However, {7, ¥,, U1}, with {¥,}2, as in Theorem 3.2, is nonsingular
but need not be diagonal, that is, {¥,}22; is a WOPS but need not be
an OPS in general(see Example 3.2 below).

We may call (3.7) a (functional) Rodrigues type formula for orthogo-
nal polynomial solutions of the differential equations (2.1). If s(x} hap-
pens to be an orthogonalizing weight for a PS {$,}%2,, then o in (3.7)
can be replaced by s(x), which is an ordinary Rodrigues type formula.

ExAMPLE 3.1. Assume that

Aji(x) = Ay{z;), 1<i<d

so that the differential equation (2.1) is of the form
d d
&*u ou
(3.10) Llu] = ZAH(:C’L)_Q + ZBz(SL‘z)— = Apu
i=1 9z Oz;

where Aj;{(z;}) = dixi + fi, Bi(z;) = gr; +hi, i =1,--- ,d, and g # 0.
Then it is shown in [3] (cf. [7]) that
e the differential equation (3.10} has a unique monic PS {IP,}32, as

solutions;
o P, (X) = Poe, (i), i =1, - ,d, and Py(x) = Pye (1) -
Pe,(za), v € Ng, where e;,2 = 1, --- ,d, is the i-th fundamental

vector in R%;
o {P,}o2, is a WOPS;
e Foreach i =1, - ,d, P, (z;), n > 0, satisfy
(3.11) Aii(2i) Pro () + Bi2i) Pro,(2:) = AnPre, (1)

In decomposition (3.3), we take D} = —1, 4 = 1,--- .d and E¥ =
0, i,j=1,--- ,d. Then

Di=-Ay, ay=-1, Bj=Bi—Ay p=Az i=1,,d
so that the conditions (3.5) and (3.9) hold. On the other hand, the

canonical moment functional o of {P,}%, is equal to 0 = 6V @ ... @
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o®) where for each i = 1,--- ,d, o) is the canonical moment func-
tional of {Fre }32,. Since Aii(mi)%g(mi} = (Bi(z;) — Al(z;))ot®) for
eachi =1, ,d, 0 = ¢®) ® ... ® 0\ satisfies the condition (3.6).
Hence, by Proposition 3.1,

(3.12) a7 [(ﬁAQ’;’)o] =0, v€EN]

i=1

where {4,} is a WOPS relative to o. In fact, we have

w'?'(x) = ghlp”r’lel (331) T P’Yde.i(‘rd)a ¥ e Ng:

so that the Rodrigues type formula (3.12) is nothing but the tensor
product of one dimensional Rodrigues formulas for {Ppe }22,, ¢ = 1,
s, d(see [1, 2, 6]).

We may, of course, replace o by a symmetry factor s(x) = s1(z;) - -
sq(x;) of the differential equation (3.10), where for each i = 1,--- ,d,
s;(z;) is symmetry factor of the differential equations (3.11).

ExaMPLE 3.2. Consider the differential equation:

Iyl = d 5 8u d du

i.4=1 '

In decomposition (3.3), we take D! = 1, i = 1,--- ,d so that Fj; =
Ai’j = XiT; and

d
a=p=q=Zw$—1, B =8=(g-3z, i=1,--,d
i=1

Then if ¢ # 1,0,—1,--+, then the differential equation (3.13) has an
OPS {®,}2, as solutions and the canonical moment functional o of
{®,}2° , satisfies the condition (3.6} so that by Theorem 3.2, {¥,}32,
with U, = [¢h, : || = n]” defined by

3’:‘[(2%3? - 1) hla] =4, (x)o, vENG

i=

is a WOPS. But, even in this case, {1} is not an OPS. For if we let o
be the cancnical moment functional of {i,}, then o satisfies L*[c] =0,
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that is,
d
(Y = 1+ @y — D%l = Doy-2e, =0, vEN]
i=0
so that
r0’0).. 0= 1,
Te; = 0, i=1,---,d
Teire; = 0, i#jand1<4,j<d
O'Qeszg,%: i=1,---,d
<07=0, v € N& with |y| =3,
oy =0, v<Ng with |y| = 4 and v; = 1 for some ¢
Ot = GETiGTI)" i=1,---,d
\O'Eei+2ej=m, i#£jand1<4,j<d

Hence, it is easy to show that
H2 = (0’ y \PQ‘I’%‘)

is nonsingular but not diagonal.
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