RODRIGUES TYPE FORMULA FOR MULTI-VARIATE ORTHOGONAL POLYNOMIALS

YONG JU KIM, KIL HYUN KWON, AND JEONG KEUN LEE

ABSTRACT. We find Rodrigues type formula for multi-variate orthogonal polynomial solutions of second order partial differential equations.

1. Introduction and preliminaries

Rodrigues formula for classical orthogonal polynomials in one variable is well developed in [1, 2, 6].

In this work, we are concerned with Rodrigues type formula for multivariate orthogonal polynomial solutions of a second order partial differential equation of spectral type in d variables:

$$(1.1) L[u] = \sum_{i,j=1}^d A_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^d B_i \frac{\partial u}{\partial x_i} = \lambda_n u, \quad n = 0, 1, 2, \cdots,$$

where $d \geq 2$ is an integer.

Let \mathbb{N}_0 be the set of nonnegative integers and \mathbb{R} the set of real numbers. For $\alpha=(\alpha_1,\cdots,\alpha_d)\in\mathbb{N}_0^d$ and $\mathbf{x}=(x_1,\cdots,x_d)\in\mathbb{R}^d$ we write $\mathbf{x}^\alpha=x_1^{\alpha_1}\cdots x_d^{\alpha_d}$ and $|\alpha|=\alpha_1+\alpha_2+\cdots+\alpha_d$. For any integer $n\in\mathbb{N}_0$, let Π_n^d be the space of real polynomials in d variables of (total) degree $\leq n$ and Π^d the space of all real polynomials in d variables. Also, let r_n^d be the number of monomials of degree exactly n. Then

$$\dim \Pi_n^d = \binom{n+d}{d} \ \text{ and } \ r_n^d = \binom{n+d-1}{n}.$$

Received November 2, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 33C50, 35P99.

Key words and phrases: multi-variate orthogonal polynomials, partial differential equations, Rodrigues type formula.

This work is partially supported by BK-21 project and KOSEF(99-2-101-001-5).

By a polynomial system(PS), we mean a sequence of polynomials

$$\{\phi_{\alpha}(\mathbf{x})\}_{\alpha\in\mathbb{N}_0^d}$$

such that $\deg(\phi_{\alpha}) = |\alpha|$ and $\{\phi_{\alpha}\}_{|\alpha|=n}$ are linearly independent modulo Π_{n-1}^d for $n \in \mathbb{N}_0$ ($\Pi_{-1}^d = \{0\}$).

For $n \in \mathbb{N}_0$, and $\mathbf{x} \in \mathbb{R}^d$, and any PS $\{\phi_{\alpha}(\mathbf{x})\}_{\alpha \in \mathbb{N}_0^d}$, we write

$$\mathbf{x}^n := [\mathbf{x}^{\alpha} : |\alpha| = n]^T$$
 and $\Phi_n := [\phi_{\alpha} : |\alpha| = n]^T$

which are vectors in $\mathbb{R}^{r_n^d}$ whose elements are arranged according to the lexicographical order of $\{\alpha \in \mathbb{N}_0^d : |\alpha| = n\}$ and use also $\{\Phi_n\}_{n=0}^{\infty}$ to denote the PS $\{\phi_{\alpha}\}_{{\alpha}\in\mathbb{N}_0^d}$.

For a matrix $\Psi = [\psi_{ij}]_{i=0,j=0}^m$ of polynomials in Π^d and a moment functional (i.e., a linear functional) σ on Π^d , we let

$$\langle \sigma, \Psi \rangle = [\langle \sigma, \psi_{ij} \rangle]_{i=0, j=0}^{m}.$$

A PS $\{\mathbb{P}_n\}_{n=0}^{\infty}$ is said to be monic if

$$\mathbb{P}_n(\mathbf{x}) = \mathbf{x}^n \text{ modulo } \Pi_{n-1}^d, \quad n \in \mathbb{N}_0.$$

For any PS $\{\Phi_n\}_{n=0}^{\infty}$, where $\Phi_n = A_n \mathbf{x}^n$ modulo Π_{n-1}^d , A_n , $n \geq 0$, is an $r_n^d \times r_n^d$ constant non-singular matrix. We then call the monic PS $\{\mathbb{P}_n\}_{n=0}^{\infty}$ the normalization of $\{\Phi_n\}_{n=0}^{\infty}$, where $\mathbb{P}_n := A_n^{-1}\Phi_n$.

For any moment functional σ on Π^d , we let

$$\langle \frac{\partial \sigma}{\partial x_i}, \phi \rangle = -\langle \sigma, \frac{\partial \phi}{\partial x_i} \rangle, \quad i = 1, 2, \cdots, d,$$

and

$$\langle \psi \sigma, \phi \rangle = \langle \sigma, \psi \phi \rangle$$

for any polynomials $\phi(\mathbf{x})$ and $\psi(\mathbf{x})$.

DEFINITION 1.1. ([4]) A PS $\{\Phi_n\}_{n=0}^{\infty}$ is a weak orthogonal polynomial system (WOPS) if there is a non-zero moment functional σ such that

$$\langle \sigma, \Phi_m \Phi_n^T \rangle = K_n \delta_{mn} \quad \text{if} \quad m \neq n \quad \text{and} \quad m, n \in \mathbb{N}_0$$

where $K_n := \langle \sigma, \Phi_n \Phi_n^T \rangle, n \in \mathbb{N}_0$, is an $r_n^d \times r_n^d$ constant diagonal matrix. If furthermore $K_n, n \in \mathbb{N}_0$, is nonsingular (respectively, positive-definite) diagonal matrix, we call $\{\Phi_n\}_{n=0}^{\infty}$ an orthogonal polynomial system (OPS) (respectively, a positive-definite OPS). In this case, we say that $\{\Phi_n\}_{n=0}^{\infty}$ is a WOPS or an OPS relative to σ .

A PS $\{\Phi_n\}_{n=0}^{\infty}$ is a WOPS relative to σ if and only if $\langle \sigma, \Phi_n R \rangle = 0$ for any polynomial $R(\mathbf{x}) \in \Pi_{n-1}^d$.

For any PS $\{\Phi_n\}_{n=0}^{\infty}$, there is a unique moment functional σ , called the canonical moment functional of $\{\Phi_n\}_{n=0}^{\infty}$, defined by the conditions

$$\langle \sigma, 1 \rangle = 1$$
 and $\langle \sigma, \Phi_n \rangle = 0, n \ge 1.$

Note that if $\{\Phi_n\}_{n=0}^{\infty}$ is a WOPS relative to σ , then σ must be a non-zero constant multiple of the canonical moment functional of $\{\Phi_n\}_{n=0}^{\infty}$.

DEFINITION 1.2. A moment functional σ is quasi-definite (respectively, positive-definite) if there is an OPS (respectively, a positive-definite OPS) relative to σ .

The following was proved in [4](see also [5]).

PROPOSITION 1.1. For a moment functional $\sigma \neq 0$, the following statements are all equivalent:

- (i) σ is quasi-definite (respectively, positive-definite);
- (ii) There is a unique monic WOPS $\{\mathbb{P}_n\}_{n=0}^{\infty}$ relative to σ ;
- (iii) There is a monic WOPS $\{\mathbb{P}_n\}_{n=0}^{\infty}$ relative to σ such that $H_n := \langle \sigma, \mathbb{P}_n \mathbb{P}_n^T \rangle$, $n \in \mathbb{N}_0$, is a nonsingular (respectively, positive-definite) symmetric matrix;
- (iv) D_n is nonsingular (respectively, positive-definite), where

$$D_n := [\sigma_{\alpha+\beta}]_{|\alpha|=0, |\beta|=0}^n, \quad n \in \mathbb{N}_0,$$

and $\sigma_{\alpha} = \langle \sigma, \mathbf{x}^{\alpha} \rangle$, $\alpha \in \mathbb{N}_{0}^{d}$, are the moments of σ .

Let $\{\mathbb{P}_n\}_{n=0}^{\infty}$ be the monic WOPS relative to a quasi-definite moment functional σ and A_n the $r_n^d \times r_n^d$ nonsingular matrix such that $A_n H_n A_n^T = \langle \sigma, (A_n \mathbb{P}_n) (A_n \mathbb{P}_n)^T \rangle$ is diagonal. Then $\{\Phi_n := A_n \mathbb{P}_n\}_{n=0}^{\infty}$ is an OPS relative to σ . It is also easy(cf. [8]) to see that σ is positive-definite if and only if $\langle \sigma, \phi^2 \rangle > 0$ for any polynomial $\phi(\mathbf{x}) \not\equiv 0$.

LEMMA 1.2. (see Lemma 2.2 in [3]) Let σ and τ be moment functionals and $R(\mathbf{x})$ a polynomial in Π^d . Then

(i)
$$\sigma = 0$$
 if and only if $\frac{\partial \sigma}{\partial x_i} = 0$ for some $i = 1, \dots, d$.

Assume that σ is quasi-definite and let $\{\Phi_n\}_{n=0}^{\infty}$ be an OPS relative to σ . Then

(ii) $R(\mathbf{x})\sigma = 0$ if and only if $R(\mathbf{x}) = 0$;

(iii) $\langle \tau, \phi_{\alpha} \rangle = 0$, $|\alpha| > k$ $(k \in \mathbb{N}_0)$ if and only if $\tau = \psi(\mathbf{x})\sigma$ for some polynomial $\psi(\mathbf{x}) \in \Pi_k^d$.

Proof. (i) and (ii) are obvious.

(iii) \Leftarrow : It is trivial from the orthogonality of $\{\Phi_n\}_{n=0}^{\infty}$ relative to σ .

(iii) \Rightarrow : Consider a moment functional $\tilde{\tau} = (\sum_{j=0}^k \mathbb{C}_j \Phi_j) \sigma$, where $\mathbb{C}_j = [C_{\alpha}]_{|\alpha|=j}, \ 0 \leq j \leq k$, are arbitrary constant row vectors. Then

$$\langle \widetilde{\tau}, \Phi_n \rangle = \sum_{j=0}^k \langle \sigma, \Phi_n \Phi_j^T \rangle \mathbb{C}_j^T = \left\{ \begin{array}{ll} 0, & \text{if} & n > k \\ \langle \sigma, \Phi_n \Phi_n^T \rangle C_n^T, & \text{if} & 0 \leq n \leq k. \end{array} \right.$$

Hence, if we take $\mathbb{C}_n = \langle \tau, \Phi_n \rangle^T H_n^{-1}$, $0 \le n \le k$, then $\langle \tau, \Phi_n \rangle = \langle \widetilde{\tau}, \Phi_n \rangle$, $n \in \mathbb{N}_0$, so that $\tau = \widetilde{\tau}$.

2. Differential operator $L[\cdot]$

We now recall quickly results from [3], which we need to develop Rodrigues type formula. If the differential equation (1.1) has a PS $\{\Phi_n\}_{n=0}^{\infty}$ as solutions, then it must be of the form

(2.1)
$$L[u] = \sum_{i,j=1}^{d} A_{ij}(\mathbf{x}) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{d} B_{i}(\mathbf{x}) \frac{\partial u}{\partial x_{i}}$$

$$= \sum_{i,j=1}^{d} \left(ax_{i}x_{j} + \sum_{k=1}^{d} b_{ij}^{k}x_{k} + c_{ij} \right) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{d} (gx_{i} + h_{i}) \frac{\partial u}{\partial x_{i}}$$

$$= \lambda_{n}u, \quad n \in \mathbb{N}_{0},$$

where $\lambda_n := an(n-1) + gn$. Without the loss of generality, we may assume that the matrix $[A_{ij}(\mathbf{x})]_{i,j=1}^d$ is symmetric, that is, $A_{ij}(\mathbf{x}) =$

$$A_{ji}(\mathbf{x}), \ 1 \leq i, j \leq d.$$
 We also assume that $\sum_{i,j=0}^{d} |A_{ij}| \not\equiv 0$ and $|a| + |g| \not\equiv 0$

since otherwise the differential equation (2.1) can not have an OPS as solutions. The differential operator $L[\cdot]$ in (2.1) is called to be admissible if $\lambda_m \neq \lambda_n$ for $m \neq n$ or equivalently $an + g \neq 0$ for $n \geq 0$. It is then easy to see (cf. [3, 4]) that the differential equation (2.1) is admissible if and only if the differential equation (2.1) has a unique monic PS as solutions.

From now on, we always assume that $L[\cdot]$ is admissible.

PROPOSITION 2.1. (see Theorem 3.7 in [3]) Let σ be the canonical moment functional of a $PS\{\Phi_n\}_{n=0}^{\infty}$ of solutions to the differential equation (2.1). Then the following statements are all equivalent:

(i) $\{\Phi_n\}_{n=0}^{\infty}$ is a WOPS relative to σ ;

(ii)
$$M_i[\sigma] := \sum_{j=1}^d \frac{\partial (A_{ij}\sigma)}{\partial x_j} - B_i\sigma = 0, \quad i = 1, \cdots, d;$$

(iii)
$$\langle \sigma, x_i \Phi_n \rangle = 0$$
, $n \geq 2$ and $i = 1, \dots, d$.

We say that the differential operator $L[\cdot]$ is symmetric if $L[\cdot] = L^*[\cdot]$ where $L^*[\cdot]$ is the formal Lagrange adjoint of $L[\cdot]$ defined by

$$L^*[u] := \sum_{i,j=1}^d \frac{\partial^2(A_{ij}u)}{\partial x_i \partial x_j} - \sum_{i=1}^d \frac{\partial(B_iu)}{\partial x_i}.$$

We also say that $L[\cdot]$ is symmetrizable if there is a non-zero C^2 -function $s(\mathbf{x})$ in some open subset of \mathbb{R}^d such that $sL[\cdot]$ is symmetric. In this case, we call $s(\mathbf{x})$ a symmetry factor of $L[\cdot]$. In fact(see [3]), a C^2 -function $s(\mathbf{x})$ ($\not\equiv 0$) is a symmetry factor of $L[\cdot]$ if and only if $s(\mathbf{x})$ is a non-zero solution of the following so-called symmetry equations:

(2.2)
$$M_i[s] = \sum_{j=1}^d \frac{\partial (A_{ij}s)}{\partial x_j} - B_i s = 0, \quad i = 1, \dots, d.$$

PROPOSITION 2.2. (see Lemma 3.9 and Theorem 3.11 in [3]) If the admissible differential equation (2.1) has an OPS $\{\Phi_n\}_{n=0}^{\infty}$ as solutions, then $|[A_{ij}]_{i,j=1}^d| \neq 0$ in any non-empty open subset of \mathbb{R}^d and $L[\cdot]$ is symmetrizable.

3. Rodrigues type formula

From now on, we may and shall assume (see Proposition 2.2) that $|[A_{ij}]_{i,j=1}^d| \neq 0$ and the differential operator $L[\cdot]$ in (2.1) is symmetrizable. Let $s(\mathbf{x})(\neq 0)$ be a symmetry factor of $L[\cdot]$. That is, $s(\mathbf{x})$ is any non-zero solution of the symmetry equations

(3.1)
$$M_i[s] = \sum_{j=1}^d (A_{ij}s)_{x_j} - B_i s = 0, \quad i = 1, \dots, d.$$

Solving the equations (3.1) for s_{x_i} , $i = 1, \dots, d$, yields

(3.2)
$$\alpha \frac{\partial s}{\partial x_i} = \beta^i s, \quad i = 1, \dots, d$$

where $\alpha := |[A_{ij}]_{i,j=1}^d|$ and β^i is the determinant of the matrix obtained from $[A_{ij}]_{i,j=1}^d$ by replacing *i*-th column of $[A_{ij}]_{i,j=1}^d$ with

$$\left[B_1 - \sum_{j=1}^d \frac{\partial A_{1j}}{\partial x_j}, \cdots, B_d - \sum_{j=1}^d \frac{\partial A_{dj}}{\partial x_j}\right]^T.$$

Note that $deg(\alpha) \leq 2d-1$ and $deg(\beta^i) \leq 2d-2$, $i=1,\dots,d$. Decompose $A_{ij}, 1 \leq i, j \leq d$, into

(3.3)
$$\begin{cases} A_{ii} = D_1^i D_2^i, & i = 1, \dots, d, \\ A_{ij} = D_1^i E^{ij} D_1^j, & 1 \le i, j \le d, \text{ and } i \ne j \end{cases}$$

where $D_1^i \not\equiv 0, \ i = 1, \cdots, d$. Then

$$\alpha = D_1^1 \cdots D_1^d \alpha_0 = \alpha_0 \prod_{j=1}^d D_1^j,$$

$$\beta^i = D_1^1 \cdots D_1^{i-1} D_1^{i+1} \cdots D_1^d \beta_0^i = \beta_0^i \prod^d D_1^j, \quad i = 1, \cdots, d$$

where

$$\alpha_0 = |(l_{ij})|, \quad l_{ij} = \begin{cases} D_2^i, & i = j \\ D_1^j E^{ij}, & i \neq j \end{cases}$$

and for $i = 1, \dots, d$,

$$\beta_{0}^{i} = | (m_{jk}) |, \quad m_{jk} = \begin{cases} B_{j} - \sum_{n=1}^{d} \frac{\partial (A_{jn})}{\partial x_{n}}, & k = i \\ D_{2}^{j}, & k = j, k \neq i \\ D_{1}^{k} E^{jk}, & k \neq i, j. \end{cases}$$

Then the equations (3.2) become

(3.4)
$$p_i \frac{\partial s}{\partial x_i} = \beta_0^i s, \quad i = 1, \dots, d$$

where $p_i = D_1^i \alpha_0$, $i = 1, \dots, d$.

Note that for each $i=1,\cdots,d, \quad p_i\not\equiv 0$ and $\deg(p_i)\leq 2d-1, \deg(\beta_0^i)\leq 2d-2.$

PROPOSITION 3.1. Let σ be the canonical moment functional of a PS $\{\Phi_n\}_{n=0}^{\infty}$ satisfying the differential equation (2.1). Assume that

(3.5)
$$\frac{\partial D_1^i}{\partial x_j} = 0, \quad i \neq j \text{ and } 1 \leq i, j \leq d$$

and

(3.6)
$$p_i \frac{\partial \sigma}{\partial x_i} = \beta_0^i \sigma, \quad i = 1, \dots, d.$$

Then for any multi-index $\gamma \in \mathbb{N}_0^d$

(3.7)
$$\partial^{\gamma} \left[\left(\prod_{i=1}^{d} p_i^{\gamma_i} \right) \sigma \right] = \psi_{\gamma} \sigma$$

where $\psi_{\gamma}(\mathbf{x})$ is a polynomial of degree $\leq (2d-2)|\gamma|$ and

(3.8)
$$\langle \sigma, \mathbf{x}^{\gamma'} \psi_{\gamma}(\mathbf{x}) \rangle = 0$$

for any $\gamma' \in \mathbb{N}_0^d$ with $0 \le |\gamma'| \le |\gamma|$ and $\gamma' \ne \gamma$. If moreover, σ is quasi-definite and

(3.9)
$$\deg(p_i) \le 2 \text{ and } \deg(\beta_0^i) \le 1, \quad i = 1, \dots, d,$$

then $\{\Psi_n\}_{n=0}^{\infty}$ with $\Psi_n = [\psi_{\gamma} : |\gamma| = n]^T$ is a WOPS relative to σ and satisfies the differential equation (2.1).

Proof. Assume that the conditions (3.5) and (3.6) hold. Then for any polynomial $\pi(\mathbf{x})$ and any multi-index $\gamma = (\gamma_1, \dots, \gamma_d) \in \mathbb{N}_0^d$, we have, for each $i = 1, \dots, d$ with $\gamma_i \neq 0$

$$rac{\partial (\pi\sigma\prod_{j=1}^d p_j^{\gamma_j})}{\partial x_i} = \sigma p_i^{\gamma_i-1}\pi_i\prod_{\substack{j=1\ i
eq i}}^d p_j^{\gamma_j},$$

where

$$\pi_i = \gamma_i \pi \frac{\partial p_i}{\partial x_i} + (|\gamma| - \gamma_i) \pi D_1^i \frac{\partial \alpha_0}{\partial x_i} + p_i \pi_{x_i} + \beta_0^i \pi.$$

Since $\deg(\pi_i) \leq \deg(\pi) + \max\{\deg(p_i) - 1, \deg(\beta_0^i)\} \leq \deg(\pi) + 2d - 2$, the first conclusion follows easily by induction on $\gamma \in \mathbb{N}_0^d$. If moreover, the condition (3.9) holds, we have $\deg(\psi_{\gamma}) \leq |\gamma|$. Now, for all $\gamma' \in \mathbb{N}_0^d$

with $0 \le |\gamma'| \le |\gamma|$ and $\gamma' \ne \gamma$

$$\langle \sigma, \mathbf{x}^{\gamma'} \psi_{\gamma} \rangle = \langle \psi_{\gamma} \sigma, \mathbf{x}^{\gamma'} \rangle = \langle \partial^{\gamma} [(\prod_{i=1}^{d} p_{i}^{\gamma_{i}}) \sigma], \mathbf{x}^{\gamma'} \rangle$$
$$= (-1)^{\gamma} \langle (\prod_{i=1}^{d} p_{i}^{\gamma_{i}}) \sigma, \partial^{\gamma} \mathbf{x}^{\gamma'} \rangle = 0$$

from which (3.8) follows.

Next we further assume that σ is quasi-definite and the condition (3.9) holds. We first claim that $\deg(\psi_{\gamma}) = |\gamma|$ and $\langle \sigma, \mathbf{x}^{\gamma} \psi_{\gamma} \rangle \neq 0$ for $\gamma \in \mathbb{N}_0^d$. Assume that $\deg(\psi_{\gamma}) \leq |\gamma| - 1$ for some $\gamma \in \mathbb{N}_0^d$ with $|\gamma| \geq 1$. Then $\psi_{\gamma} \equiv 0$ since $\langle \sigma, \pi \psi_{\gamma} \rangle = 0$ for any $\pi(\mathbf{x})$ in $\Pi_{|\gamma|-1}^d$ by (3.8) and σ is quasi-definite. Hence $\partial^{\gamma}[(\prod_{i=1}^d p_i^{\gamma_i})\sigma] = 0$ so that $p_i(\mathbf{x}) \equiv 0$ for some i with $1 \leq i \leq d$ which is a contradiction. Therefore $\deg(\psi_{\gamma}) = \gamma$ and $\langle \sigma, \mathbf{x}^{\gamma} \psi_{\gamma} \rangle \neq 0$ for all $\gamma \in \mathbb{N}_0^d$ by (3.8).

We now claim that for each $n \geq 0$, $\{\psi_{\gamma}\}_{|\gamma|=n}$ are linearly independent modulo Π_{n-1}^d so that $\{\Psi_n\}_{n=0}^{\infty}$ is a PS. For any integer $n \geq 1$, let $C_{\gamma}, \ \gamma \in \mathbb{N}_0^d$ with $|\gamma| = n$, be constants such that $\phi(\mathbf{x}) = \sum_{|\gamma|=n} C_{\gamma} \psi_{\gamma}$ is of degree

 $\leq n-1$. Then $\phi(\mathbf{x}) \equiv 0$ since $\langle \sigma, \phi(\mathbf{x})\pi(\mathbf{x}) \rangle = 0$ for any $\pi \in \Pi_{n-1}^d$ by (3.8). Then, for all $\gamma \in \mathbb{N}_0^d$ with $|\gamma| = n$

$$\langle \sigma, \phi(\mathbf{x}) \mathbf{x}^{\gamma} \rangle = C_{\gamma} \langle \sigma, \psi_{\gamma} \mathbf{x}^{\gamma} \rangle = 0$$

so that $C_{\gamma} = 0$, $\gamma \in \mathbb{N}_0^d$ with $|\gamma| = n$ by the first claim. Hence $\{\psi_{\gamma}\}_{|\gamma|=n}$ are linearly independent modulo Π_{n-1}^d and so $\{\Psi_n\}_{n=0}^{\infty}$ is a WOPS relative to σ by (3.8).

Finally, in order to see that $\{\Psi_n\}_{n=0}^{\infty}$ satisfy the differential equation (2.1), we let $\{\mathbb{P}_n\}_{n=0}^{\infty}$ and $\{\mathbb{Q}_n\}_{n=0}^{\infty}$ be the normalizations of $\{\Phi_n\}_{n=0}^{\infty}$ and $\{\Psi_n\}_{n=0}^{\infty}$ respectively. Then $\{\mathbb{P}_n\}_{n=0}^{\infty}$ and $\{\mathbb{Q}_n\}_{n=0}^{\infty}$ are monic WOPS's relative to σ so that $\mathbb{P}_n = \mathbb{Q}_n$, $n \geq 0$, by Proposition 1.1. Since $\{\Phi_n\}_{n=0}^{\infty}$ satisfy the differential equation (2.1), $\{\mathbb{Q}_n\}_{n=0}^{\infty}$ and so $\{\Psi_n\}_{n=0}^{\infty}$ also satisfy the differential equation (2.1).

In passing, we note: The moment functional σ in Proposition 3.1 satisfies (3.1) and so (3.2) (see Proposition 2.1). However we can not drop the condition (3.6) since the condition (3.2) for σ : $p_i \frac{\partial \sigma}{\partial x_i} = \beta_0^i \sigma$ ($i = 1, \dots, d$) does not necessarily imply the condition (3.6).

From Proposition 3.1, we now have:

THEOREM 3.2. Assume that the differential equation (2.1) has an OPS $\{\Phi_n\}_{n=0}^{\infty}$ relative to σ as solutions. If the conditions (3.5), (3.6), and (3.9) hold, then the PS $\{\Psi_n\}_{n=0}^{\infty}$ with $\Psi_n = [\psi_{\gamma} : |\gamma| = n]^T$ defined by (3.7) is a WOPS relative to σ and satisfies the differential equation (2.1).

However, $\langle \sigma, \Psi_n \Psi_n^T \rangle$, with $\{\Psi_n\}_{n=0}^{\infty}$ as in Theorem 3.2, is nonsingular but need not be diagonal, that is, $\{\Psi_n\}_{n=0}^{\infty}$ is a WOPS but need not be an OPS in general(see Example 3.2 below).

We may call (3.7) a (functional) Rodrigues type formula for orthogonal polynomial solutions of the differential equations (2.1). If $s(\mathbf{x})$ happens to be an orthogonalizing weight for a PS $\{\Phi_n\}_{n=0}^{\infty}$, then σ in (3.7) can be replaced by $s(\mathbf{x})$, which is an ordinary Rodrigues type formula.

Example 3.1. Assume that

$$\begin{cases} A_{ij} \equiv 0, & i \neq j, 1 \leq i, j \leq d \\ A_{ii}(\mathbf{x}) = A_{ii}(x_i), & 1 \leq i \leq d \end{cases}$$

so that the differential equation (2.1) is of the form

(3.10)
$$L[u] = \sum_{i=1}^{d} A_{ii}(x_i) \frac{\partial^2 u}{\partial x_i^2} + \sum_{i=1}^{d} B_i(x_i) \frac{\partial u}{\partial x_i} = \lambda_n u$$

where $A_{ii}(x_i) = d_i x_i + f_i$, $B_i(x_i) = g x_i + h_i$, $i = 1, \dots, d$, and $g \neq 0$. Then it is shown in [3] (cf. [7]) that

- the differential equation (3.10) has a unique monic PS $\{\mathbb{P}_n\}_{n=0}^{\infty}$ as solutions;
- P_{ne_i} (\mathbf{x}) = P_{ne_i} (x_i), $i = 1, \dots, d$, and $P_{\gamma}(\mathbf{x}) = P_{\gamma_1 e_1}(x_1) \dots$ $P_{\gamma_d \mathbf{e}_d}(x_d), \ \gamma \in \mathbb{N}_0^d$, where $\mathbf{e}_i, i = 1, \cdots, d$, is the *i*-th fundamental vector in \mathbb{R}^d ;
- $\{\mathbb{P}_n\}_{n=0}^{\infty}$ is a WOPS; For each $i = 1, \dots, d, P_{ne_i}(x_i), n \geq 0$, satisfy

(3.11)
$$A_{ii}(x_i)P''_{ne_i}(x_i) + B_i(x_i)P'_{ne_i}(x_i) = \lambda_n P_{ne_i}(x_i).$$

In decomposition (3.3), we take $D_2^i = -1$, $i = 1, \dots, d$ and $E^{ij} =$ 0, $i, j = 1, \dots, d$. Then

$$D_1^i = -A_{ii}, \quad \alpha_0 = -1, \quad \beta_0^i = B_i - A'_{ii}, \quad p_i = A_{ii}, \quad i = 1, \dots, d$$

so that the conditions (3.5) and (3.9) hold. On the other hand, the canonical moment functional σ of $\{\mathbb{P}_n\}_{n=0}^{\infty}$ is equal to $\sigma = \sigma^{(x_1)} \otimes \cdots \otimes \sigma^{(x_n)}$

 $\sigma^{(x_d)}$, where for each $i=1,\cdots,d,$ $\sigma^{(x_i)}$ is the canonical moment functional of $\{P_{ne_i}\}_{n=0}^{\infty}$. Since $A_{ii}(x_i)\frac{\partial}{\partial x_i}\sigma^{(x_i)}=(B_i(x_i)-A'_{ii}(x_i))\sigma^{(x_i)}$ for each $i=1,\cdots,d,$ $\sigma=\sigma^{(x_1)}\otimes\cdots\otimes\sigma^{(x_d)}$ satisfies the condition (3.6). Hence, by Proposition 3.1,

(3.12)
$$\partial^{\gamma} \left[\left(\prod_{i=1}^{d} A_{ii}^{\gamma_{i}} \right) \sigma \right] = \psi_{\gamma} \sigma, \quad \gamma \in \mathbb{N}_{0}^{d}$$

where $\{\psi_{\gamma}\}$ is a WOPS relative to σ . In fact, we have

$$\psi_{\gamma}(\mathbf{x}) = g^{|\gamma|} P_{\gamma_1 \mathbf{e}_1}(x_1) \cdots P_{\gamma_d \mathbf{e}_d}(x_d), \quad \gamma \in \mathbb{N}_0^d,$$

so that the Rodrigues type formula (3.12) is nothing but the tensor product of one dimensional Rodrigues formulas for $\{P_{ne_i}\}_{n=0}^{\infty}$, $i=1, \dots, d(\text{see }[1, 2, 6])$.

We may, of course, replace σ by a symmetry factor $s(\mathbf{x}) = s_1(x_i) \cdots s_d(x_i)$ of the differential equation (3.10), where for each $i = 1, \dots, d$, $s_i(x_i)$ is symmetry factor of the differential equations (3.11).

EXAMPLE 3.2. Consider the differential equation:

(3.13)
$$L[u] = \sum_{i,j=1}^{d} (x_i x_j - \delta_{ij}) \frac{\partial^2 u}{\partial x_i \partial_{x_j}} + \sum_{i=1}^{d} g x_i \frac{\partial u}{\partial x_i} = \lambda_n u.$$

In decomposition (3.3), we take $D_1^i=1,\ i=1,\cdots,d$ so that $E_{ij}=A_{ij}=x_ix_j$ and

$$\alpha = p = q = \sum_{i=1}^{d} x_i^2 - 1, \quad \beta^i = \beta_0^i = (g - 3)x_i, \quad i = 1, \dots, d.$$

Then if $g \neq 1, 0, -1, \cdots$, then the differential equation (3.13) has an OPS $\{\Phi_n\}_{n=0}^{\infty}$ as solutions and the canonical moment functional σ of $\{\Phi_n\}_{n=0}^{\infty}$ satisfies the condition (3.6) so that by Theorem 3.2, $\{\Psi_n\}_{n=0}^{\infty}$ with $\Psi_n = [\psi_{\gamma} : |\gamma| = n]^T$ defined by

$$\partial^{\gamma} \Big[\Big(\sum_{i=1}^d x_i^2 - 1 \Big)^{|\gamma|} \sigma \Big] = \psi_{\gamma}(\mathbf{x}) \sigma, \quad \gamma \in \mathbb{N}_0^d$$

is a WOPS. But, even in this case, $\{\psi_{\gamma}\}$ is not an OPS. For if we let σ be the canonical moment functional of $\{\psi_{\gamma}\}$, then σ satisfies $L^*[\sigma] = 0$,

that is,

$$|\gamma|(|\gamma|-1+g)\sigma_{\gamma} - \sum_{i=0}^{d} \gamma_{i}(\gamma_{i}-1)\sigma_{\gamma-2\mathbf{e}_{i}} = 0, \quad \gamma \in \mathbb{N}_{0}^{d}$$

so that

$$\begin{cases} \sigma_{0,\cdots,0}=1,\\ \sigma_{\mathbf{e}_i}=0, & i=1,\cdots,d\\ \sigma_{\mathbf{e}_i+\mathbf{e}_j}=0, & i\neq j \text{ and } 1\leq i,j\leq d\\ \sigma_{2\mathbf{e}_i}=\frac{1}{g+1}, & i=1,\cdots,d\\ \sigma_{\gamma}=0, & \gamma\in\mathbb{N}_0^d \text{ with } |\gamma|=3,\\ \sigma_{\gamma}=0, & \gamma\in\mathbb{N}_0^d \text{ with } |\gamma|=4 \text{ and } \gamma_i=1 \text{ for some } i\\ \sigma_{4\mathbf{e}_i}=\frac{3}{(g+1)(g+3)}, & i=1,\cdots,d\\ \sigma_{2\mathbf{e}_i+2\mathbf{e}_j}=\frac{1}{(g+1)(g+3)}, & i\neq j \text{ and } 1\leq i,j\leq d. \end{cases}$$
 Hence, it is easy to show that

Hence, it is easy to show that

$$H_2 = \langle \sigma, \Psi_2 \Psi_2^T \rangle$$

is nonsingular but not diagonal.

References

- [1] W. C. Brenke, On polynomial solutions of a class of linear differential equations of the second order, Bull. Amer. Math. Soc. 36 (1930), 77-84.
- [2] C. W. Cryer, Rodrigues formulas and the classical orthogonal polynomials, Boll. Unione. Mat. Ital. 25 (1970), 1-11.
- [3] Y. J. Kim, K. H. Kwon, and J. K. Lee, Multi-variate orthogonal polynomials and second order partial differential equation, Comm. Appl. Anal., to appear.
- [4] H. L. Krall and I. M. Sheffer, Orthogonal polynomials in two variables, Ann. Mat. Pura Appl. seri 4, 76 (1967), 325-376.
- [5] L. L. Littlejohn, Orthogonal polynomial solutions to ordinary and partial differential equations, Proc. 2nd Intern. Symp. Orthog. Polyn. and their Appl., M. Alfaro and al. Ed's, Segovia(Spain), (1986), Lect. Notes Math. 1329, Springer-Verlag (1988), 98-124.
- [6] F. Marcellán, A. Branquinho, and J. Petronilho, Classical orthogonal polynomials: A functional approach, Acta Appl. Math. 34 (1994), 283-303.
- [7] P. K. Suetin, Orthogonal polynomials in two variables, Nauka, Moscow, 1988 (in Russian).
- [8] Y. Xu, On multivariate orthogonal polynomials, SIAM J. Math. Anal. 4 (1993), 783-794.

Yong Ju Kim and Kil Hyun Kwon, Division of Applied Mathematics, KAIST, Taejon 305-701, Korea

E-mail: khkwon@jacobi.kaist.ac.kr

JEONG KEUN LEE, DEPARTMENT OF MATHEMATICS, SUNMOON UNIVERSITY, ASAN 336-840, KOREA

E-mail: jklee@omega.sunmoon.ac.kr