• Title/Summary/Keyword: polymer scaffold

Search Result 134, Processing Time 0.028 seconds

Effects of Solvent on the Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion (상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조에서의 용매의 효과)

  • Cho, Yu Song;Kim, Young Kyoung;Koo, Ja-Kyung;Park, Jong Soon
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.113-122
    • /
    • 2014
  • Porous poly(L-lactic acid)(PLLA) scaffold membranes were prepared via. phase separation process. Chloroform, dichloromethane and 1,4-dioxane were used as solvent and, ethyl alcohol was used as non-solvent. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. The scaffold membranes obtained from the casting solutions with chloroform and with dichloromethane showed similar morphologies. They showed sponge-like porous structure with the pore size in the range of $3-10{\mu}m$ and, their porosities were in 50-80% range. Using 1,4-dioxane as solvent, nano-fibrous scaffold membranes with porosities over 80% were fabricated. When the polymer content in the solution with 1,4-dioxane was lowered to 4%, highly porous, macroporous and nano-fibrous scaffold membranes were obtained. The size of the macropore was tens of the microns and the porosity was around 90%. These results indicate that the solvent has significant effect on the scaffold membrane structure and, that scaffold membranes with various structures can be fabricated through phase separation method by choosing solvent and by controlling polymer concentration in the casting solution.

Implantation of Fetal Hepatocytes on Biodegradable Polymer Scaffolds (생분해성 고분자 담체를 이용한 태아 간세포의 이식)

  • 곽소정;최동호;백승삼;김상수;최차용;김병수
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.210-214
    • /
    • 2004
  • Whole liver transplantation, the currently available treatment of end-stage liver disease, has limitations including serious donor shortage, fatal surgical complications, risk of allograft rejection, and the requirement of life-long immunosuppression. In this study, we investigated the possibility of reconstructing liver tissues in vivo by implanting fetal hepatocytes on polymer scaffolds as a potential method to replace the current treatments. Fetal hepatocytes were freshly isolated from mice and seeded onto porous mesh scaffolds fabricated from polyglycolic acid, a biodegradable synthetic polymer. The seeded scaffolds were implanted into peritoneal cavity of athymic mice for one week. As a control, fetal hepatocytes were implanted without scaffold. One week after transplantation, liver-like tissues formed. Histological and immunohistochemical analyses indicated that the hepatocyles and liver tissue structures (bile ducts) were present in the newly formed tissues. In the control group, no transplanted hepatocytes were observed. Theses preliminary results suggest that liver tissues may be regeneration by transplanting fetal hepatocytes on polymer scaffolds.

Controlling Pore Size of Electrospun Silk Fibroin Scaffold for Tissue Engineering (전기방사를 이용한 조직공학용 실크 피브로인 나노 섬유 지지체의 기공 크기 조절)

  • Cho, Se-Youn;Park, Hyun-Ho;Jin, Hyoung-Joon
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.651-655
    • /
    • 2012
  • Considerable effort has been directed toward the use of silk fibroin as a biotechnological material in biomedical applications on account of its excellent biodegradability, biocompatibility, and unique mechanical properties. For use in tissue engineering, it is very important to design and control the pore architecture of polymeric scaffolds, which provide the vital framework for seeded cells to organize into functioning tissue. In the present study, a silk fibroin scaffold with controlled interconnectivity and pore size was prepared using an electrospinning method with poly(ethylene oxide).

Experimental Research of ZrO2/BCP/PCL Scaffold with Complex Pore Pattern for Bone Tissue Regeneration (골 조직 재생을 위한 복합 공극 패턴을 가진 ZrO2/BCP/PCL 인공지지체의 실험적 평가)

  • Sa, Min-Woo;Shim, Hae-Ri;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1153-1159
    • /
    • 2015
  • Recently, synthetic biopolymers and bioceramics such as poly (${\varepsilon}$-caprolactone)(PCL), hydroxyapatite, tricalcium phosphate, biphasic calcium phosphate(BCP), and zirconia have been used as substrates to generate various tissues or organs in tissue engineering. Thus, the purpose of this study was the characterization of $ZrO_2$/BCP/PCL(ZBP) scaffold for bone tissue regeneration. Based on the result of single-line test, blended 3D ZBP scaffolds with fully interconnected pores and new complex pore pattern of $45^{\circ}+135^{\circ}$-type and staggered-type were successfully fabricated using a polymer deposition system. Furthermore, the effect of ZBP scaffold on mechanical property was analyzed. In addition, in vitro cell interaction of ZBP scaffold on MG63 cells was evaluated using a cell counting kit-8(CCK-8) assay.

Improvement of the Biocompatibility of Chitosan Dermal Scaffold by Rigorous Dry Heat Treatment

  • Kim, Chun-Ho;Park, Hyun-Sook;Gin, Yong-Jae;Son, Young-Sook;Lim, Sae-Hwan;Park, Young-Ju;Park, Ki-Sook;Park, Chan-Woong
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.367-373
    • /
    • 2004
  • We have developed a rigorous heat treatment method to improve the biocompatibility of chitosan as a tissue-engineered scaffold. The chitosan scaffold was prepared by the controlled freezing and lyophilizing method using dilute acetic acid and then it was heat-treated at 110$^{\circ}C$ in vacuo for 1-3 days. To explore changes in the physicochemical properties of the heat-treated scaffold, we analyzed the degree of deacetylation by colloid titration with poly(vinyl potassium sulfate) and the structural changes were analyzed by scanning electron microscopy, Fourier transform infrared (FT-IR) spectroscopy, wide-angle X-ray diffractometry (WAXD), and lysozyme susceptibility. The degree of deacetylation of chitosan scaffolds decreased significantly from 85 to 30% as the heat treatment time increased. FT-IR spectroscopic and WAXD data indicated the formation of amide bonds between the amino groups of chitosan and acetic acids carbonyl group, and of interchain hydrogen bonding between the carbonyl groups in the C-6 residues of chitosan and the N-acetyl groups. Our rigorous heat treatment method causes the scaffold to become more susceptible to lysozyme treatment. We performed further examinations of the changes in the biocompatibility of the chitosan scaffold after rigorous heat treatment by measuring the initial cell binding capacity and cell growth rate. Human dermal fibroblasts (HDFs) adhere and spread more effectively to the heat-treated chitosan than to the untreated sample. When the cell growth of the HDFs on the film or the scaffold was analyzed by an MTT assay, we found that rigorous heat treatment stimulated cell growth by 1.5∼1.95-fold relative to that of the untreated chitosan. We conclude that the rigorous dry heat treatment process increases the biocompatibility of the chitosan scaffold by decreasing the degree of deacetylation and by increasing cell attachment and growth.

Preparation and Release Behavior of Albumin-Loaded PLGA Scaffold by Ice Particle Leaching Method (얼음입자추출법을 이용한 알부민 함유 PLGA 담체의 제조 및 방출 거동)

  • Hong Keum Duck;Seo Kwang Su;Kim Soon Hee;Kim Sun Kyung;Khang Gilson;Shin Hyung Sik;Kim Moon Suk;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.282-287
    • /
    • 2005
  • A novel ice particle leaching method for fabrication of porous and biodegradable PLGA scaffold has been proposed for the application to tissue engineering. After uniform mixing of poly(L-lactide-co-glycolide) (PLGA) and bovine serum albumin-fluorescein isothiocyanate (FITC-BSA), the FITC-BSA loaded scaffold was fabricated by adding various ratio of ice particle. The release profiles of FITC-BSA were examined using pH 7.4 PBS for 28 days at $37^{circ}$. The release amount was determined by fluorescence intensity by using the fluorescence spectrophotometer and the morphological change of the scaffolds was observed by scanning electron microscope. The release initial burst of BSA containing scaffolds was lower than that of simple dipping scaffolds resulting in constant release aspect. Although the BSA concentration increased. the initial burst was not increased. As a result of this study, it can be suggested that ice particle leaching method for the tissue engineered scaffold miff be very useful and it is possible to impregnate with water soluble factors like cytokine. We suggest that ice particle leaching method may be useful to tissue engineered organ regeneration.

Fabrication of Nanofiber-Combined 3D Scaffolds using Dual-Head Deposition Technology (듀얼헤드 적층 기술을 이용한 나노섬유로 결합된 3D 인공지지체 제작)

  • Sa, Min-Woo;Lee, Chang-Hee;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.108-115
    • /
    • 2018
  • In bone tissue engineering, polycaprolactone (PCL) is one of the most widely used biomaterials to manufacture scaffolds as a synthetic polymer with biodegradability and biocompatibility. The polymer deposition system (PDS) with four axis heads, which can dispense bio-polymers, has been used in scaffold fabrication for tissue engineering applications. A dual-head deposition technology of PDS is an effective technique to fabricate 3D scaffolds. The electrospinning technology has been widely used to fabricate porous and highly interconnected polymer fibers. Thus, PDS can fabricate nanofiber-combined hybrid scaffolds using fused deposition modeling (FDM) and electrospinning methods. This study aims to fabricate nanofiber-combined scaffolds with uniform nanofibers using PDS. The PCL nanofibers were fabricated and evaluated according to the fabrication process parameters. PCL nanofibers were successfully fabricated when the applied voltage, tip-to-collector distance, flow rate, and solution concentration were 5 kV, 1 cm, 0.1 ml/h, and 8 wt%, respectively. The cell proliferation was evaluated according to the electrospinning time. Scanning electron microscopy was used to acquire images of the cross-sectioned hybrid scaffolds. The cell proliferation test of the PCL and nanofiber-combined hybrid scaffolds was performed using a CCK-8 assay according to the electrospinning time. The result of in-vitro cell proliferation using osteosarcoma MG-63 cells shows that the hybrid scaffold has good potential for bone regeneration.

Fabrication of Poly(γ-glutamic acid) Porous Scaffold for Tissue Engineering Applications (생체조직공학적 응용을 위한 폴리감마글루탐산 다공성 지지제의 제조)

  • Jeon, Hyeon Ae;Lee, Seung Wook;Kwon, Oh Hyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.35-41
    • /
    • 2014
  • Poly(g-glutamic acid) (g-PGA) is a very promising biodegradable polymer that is produced by microorganism of Bacillus subtilis. Because g-PGA is water-soluble, anionic, biodegradable, and even edible, its potential applications have been studied from an industrial standpoint. In this study, we fabricated porous g-PGA foams by means of a freeze-solvent extraction method for tissue-engineering applications. Porous g-PGA foams were chemically cross-linked using a hexamethylene diisocyanate solution. An aqueous basic solution was used to neutralize g-PGA foam for cell culturing. During an in vitro cell culture study, it was observed that primary rabbit ear chondrocytes were well at tached and spread over the surface oft hree-dimensional cross-linkedg-PGA foam. From these results, it is concluded that cross-linkedg-PGA foam is aprom is in gmaterial for tissue-engineering applications, especially those pertaining to the regeneration of human cartilage.

Effects of PLGA/Fibrin Scaffolds on Attachment and Proliferation of Costal Cartilage Cells (PLGA/피브린 지지체가 늑연골 세포의 부착과 성장에 미치는 영향)

  • Song, Jeong Eun;Lee, Yujung;Lee, Yun Me;Cho, Sun Ah;Jang, Ji Eun;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2013
  • Poly(lactide-co-glycolic acid) (PLGA) has been widely used in the drug delivery and tissue engineering applications because of its good mechanical strength and biodegradation profile. However, cell attachment to the scaffold is low compared with that on fibrin although cells can be attached to the polymer surface. In this study, PLGA scaffolds were soaked in cells-fibrin suspension and polymerized with dropping fibrinogen-thrombin solution. Cellular proliferation activity was observed in PLGA/fibrin-seeded costal cartilage cells (CC) on 1, 3, and 7 days using the MTT assay and SEM. The effects of fibrin on the extracellular matrix (ECM) formation were evaluated using CC cell-seeded PLGA/fibrin scaffolds. The PLGA/fibrin scaffolds elicited more production of glycosaminoglycan (GAG) and collagen than the PLGA scaffold. In this study, fibrin incorporated PLGA scaffolds were prepared to evaluate the effects of fibrin on the cell attachment and proliferation in vitro and in vivo. In this result, we confirmed that proliferation of cells in PLGA/fibrin scaffolds were better than in PLGA scaffolds. The PLGA/fibrin scaffolds provide suitable environment for growth and proliferation of costal cartilage cells.