DOI QR코드

DOI QR Code

Effects of Solvent on the Fabrication of Poly(L-lactide) Scaffold Membranes through Phase Inversion

상전이를 통한 Poly(L-lactide) 스캐폴드 막의 제조에서의 용매의 효과

  • Cho, Yu Song (School of Energy.Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Young Kyoung (School of Energy.Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Koo, Ja-Kyung (School of Energy.Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Park, Jong Soon (GLO-ONE Co. LTD.)
  • 조유송 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 김영경 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 구자경 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 박종순 ((주)글로원)
  • Received : 2014.03.12
  • Accepted : 2014.03.26
  • Published : 2014.04.30

Abstract

Porous poly(L-lactic acid)(PLLA) scaffold membranes were prepared via. phase separation process. Chloroform, dichloromethane and 1,4-dioxane were used as solvent and, ethyl alcohol was used as non-solvent. Morphologies, mechanical properties and mass transfer characteristics of the scaffold membranes were investigated through SEM, stress-strain test and glucose diffusion test. The scaffold membranes obtained from the casting solutions with chloroform and with dichloromethane showed similar morphologies. They showed sponge-like porous structure with the pore size in the range of $3-10{\mu}m$ and, their porosities were in 50-80% range. Using 1,4-dioxane as solvent, nano-fibrous scaffold membranes with porosities over 80% were fabricated. When the polymer content in the solution with 1,4-dioxane was lowered to 4%, highly porous, macroporous and nano-fibrous scaffold membranes were obtained. The size of the macropore was tens of the microns and the porosity was around 90%. These results indicate that the solvent has significant effect on the scaffold membrane structure and, that scaffold membranes with various structures can be fabricated through phase separation method by choosing solvent and by controlling polymer concentration in the casting solution.

상전이 과정을 통하여 poly(L-lactic acid) 재질의 다공성 스캐폴드 막을 제조하였다. 비용매로는 에탄올을 사용하였고, 용매로서 chloroform, dichloromethane 및 1,4-dioxane을 사용하였으며, 제조한 스캐폴드 막의 모폴로지와 기계적 강도 및 물질전달 특성은 각각 SEM, 인장강도실험 및 당 확산실험을 통하여 측정, 평가하였다. chloroform을 용매로 사용한 스캐폴드 막과 dichloromethane을 용매로 사용한 스캐폴드 막은 서로 유사한 모폴로지와 기계적 특성을 보였다. 이들 스캐폴드 막은 공극 직경 $3-10{\mu}m$의 다공성 스펀지 구조를 보였으며, 범위 50-80%의 공극률을 보였다. 1,4-dioxane 용매의 용액으로부터 제조된 스캐폴드 막은 공극률 80% 이상의 나노섬유 형태를 보였다. 캐스팅 용액 내의 고분자 함량이 4% 이하로 낮추었을 때에는 나노섬유 구조의 바탕에 수십 ${/mu}m$의 거대 공극이 존재하는 높은 공극률(90%)을 갖는 스캐폴드 막이 얻어졌다. 이러한 결과를 통하여 스캐폴드 막의 구조에 대하여 용매는 중요한 효과를 미치며, 상전이 과정에서 용매선택과 캐스팅 용액의 농도 조절을 통하여 다양한 구조의 스캐폴드 막을 제조할 수 있다는 결론을 도출하였다.

Keywords

References

  1. J. L. Ma, C. Gao, Z. Mao J. Zhou, J. Shen, X. Hu, and C. Hun, "Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering", Biomaterials, 24, 4833 (2003). https://doi.org/10.1016/S0142-9612(03)00374-0
  2. J. M. J. Kim S. D. Lee, and K. H. Youm, "Effect of Inorganic Salt Additives on Formation of Phase Inversion Polyethersulfone Ultrafiltration Membrane", Membrane Journal, 12, 2, 75 (2002).
  3. J. D. H. Yu, M. A. Jeong, J. W. Rhim, H. S. Byun, C. H. Jeong, Y. M. Lee, M. S. Seo, and S. Y. Nam, "Preparation and Characterization of Microporous PVDF Membrane for Li-ion rechargeable battery", Membrane Journal, 3, 233 (2007).
  4. J. B. G. Park, S.-H. Kong, and S. Y. Nam, "Phase behavior and morphological studies of polysulfone membranes; The effect of alcohols used as a nonsolvent coagulant", Membrane Journal, 15, 4, 272 (2005).
  5. J. M. Ebrahimian-Hosseinabadi, F. Ashrafizadeh, M. Etemadifar, and S. S. Venkatraman, "Evaluating and Modeling the Mechanical Properties of the Prepared PLGA/nano-BCP Composite Scaffolds for Bone Tissue Engineering", J. Matr. Sci. Technol., 27, 12, 1005 (2011).
  6. J. T. Lou, X. Wang, and G. Song, "Fabrication of nano-fibrous poly(l-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber", Int. J. Biomed. Macromol., 61, 353 (2013). https://doi.org/10.1016/j.ijbiomac.2013.07.025
  7. J. B. J. Papenburg, L. Vogelaar, L. Bolhuis-Versteeg, R. Lammertink, D. Stamatialis, and M. Wessling, "One-step fabrication of porous micropatterned scaffolds to control cell behavior", Biomaterials, 28, 1998 (2007). https://doi.org/10.1016/j.biomaterials.2006.12.023
  8. J. B. J. Papenburg, L. Bolhuis-Versteeg, D. W. Grijpma, J. Feijen, M. Wessling, and D. Stamatialis, "A facile method to fabricate poly (L-lactide) nano-fibrous morphologies by phase inversion", Acta Biomaterialia, 6, 2477 (2010). https://doi.org/10.1016/j.actbio.2009.12.051
  9. J. U. Boudriot, R. Dersch, A. Greiner, and J. H. Wendorff, "Electrospinning Approaches toward Scaffold Engineering - a brief overview", Artif. Organs, 10, 785 (2006).
  10. J. R. Chen and J. A. Hunt, "Biomimetic materials processing for tissue-engineering processes", J. Mater. Chem., 38, 3974 (2007).
  11. J. L. Moroni, J. R. De Wijn, and C. A. Van Blitterswijk, "Integrating novel technologies to fabricate smart scaffolds", J. Biomater. Sci. Polym. Ed., 5, 543 (2008).
  12. J. M. M. Stevens and J. H. George, "Exploring and engineering the cell surface interface", Science, 5751, 1135 (2005).
  13. J. B. M. Whited, J. R. Whitney M. C. Hofmann, Y. Xu, and M. N. Rylander, "Pre-osteoblast infiltration and differentiation in highly porous apatite-coated PLLA electrospun scaffolds", Biomaterials, 32, 9, 2294 (2011).
  14. J. E. P. S. Tan and C. T. Lim, "Mechanical characterization of nanofibers - A review", Compos. Sci. Technol., 66, 9, 1102 (2006).
  15. J. S. Liao, R. Murugan, C. K. Chan, and S. Ramakrishna, "Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering", J. Mech. Behav. Biomed. Mater., 1, 3, 252 (2008), https://doi.org/10.1016/j.jmbbm.2008.01.007
  16. J. N. M. S Bettahalli, H. Steg, M. wessling, and D. Stamatials, "Development of poly(L-lactic acid)hollow fiber membranes gor aritficial vasculature in tissue engineering scaffolds", J. Membr. Sci., 117 (2011).