Browse > Article

Preparation and Release Behavior of Albumin-Loaded PLGA Scaffold by Ice Particle Leaching Method  

Hong Keum Duck (Department of Polymer Nano Science and Technology, Chonbuk National University)
Seo Kwang Su (Department of Polymer Nano Science and Technology, Chonbuk National University)
Kim Soon Hee (Department of Advanced Organic Materials Engineering, Chonbuk National University)
Kim Sun Kyung (Department of Advanced Organic Materials Engineering, Chonbuk National University)
Khang Gilson (Department Advanced Organic Materials Engineering, Chonbuk National University, Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology)
Shin Hyung Sik (Department of Chemical Engineering, Chonbuk National University)
Kim Moon Suk (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology)
Lee Hai Bang (Nanobiomaterials Laboratories, Korea Research Institute of Chemical Technology)
Publication Information
Polymer(Korea) / v.29, no.3, 2005 , pp. 282-287 More about this Journal
Abstract
A novel ice particle leaching method for fabrication of porous and biodegradable PLGA scaffold has been proposed for the application to tissue engineering. After uniform mixing of poly(L-lactide-co-glycolide) (PLGA) and bovine serum albumin-fluorescein isothiocyanate (FITC-BSA), the FITC-BSA loaded scaffold was fabricated by adding various ratio of ice particle. The release profiles of FITC-BSA were examined using pH 7.4 PBS for 28 days at $37^{circ}$. The release amount was determined by fluorescence intensity by using the fluorescence spectrophotometer and the morphological change of the scaffolds was observed by scanning electron microscope. The release initial burst of BSA containing scaffolds was lower than that of simple dipping scaffolds resulting in constant release aspect. Although the BSA concentration increased. the initial burst was not increased. As a result of this study, it can be suggested that ice particle leaching method for the tissue engineered scaffold miff be very useful and it is possible to impregnate with water soluble factors like cytokine. We suggest that ice particle leaching method may be useful to tissue engineered organ regeneration.
Keywords
ice particle leaching method; PLGA scaffold; FITC-BSA; constant-release; organ regeneration;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 G. Khang and H. B. Lee, Biomedical Polymers, Korean Chemical Society Press, Munundang, Seoul, 2001
2 G. Khang, M. K. Choi, J. M. Rhee, S. J. Lee, and H. B. Lee, Korea Polym. J., 9, 107 (2001)
3 H. S. Choi, G. Khang, H. Shin, J. M. Rhee, and H. B. Lee, Int. J. Pharm., 234, 195 (2002)   DOI
4 M. Penco, S. Marchioni, P. Ferruti, S. D'antone, and P. Deghenghi, Biomaterials, 17, 1583 (1996)   DOI   ScienceOn
5 I. Y. Kim, J. W. Jang, B. Lee, S. J. Lee, J. H. Choee, H. B. Lee, and G. Khang, Macromol. Chem. Symp., 15, 141 (2002)
6 A. P. Marques, R. L. Reis, and J. A. Hunt, Biomaterials, 23, 1471 (2002)   DOI   ScienceOn
7 S. A. Seo, H. S. Choi, G. Khang, J. M. Rhee, and H. B. Lee, Int. J. Pharm., 239, 93 (2002)   DOI
8 G. Khang, P. Shin, I. Kim, B. Lee, S. J. Lee, Y. M. Lee, H. B. Lee, and I. Lee, Macromol. Res., 10, 158 (2002)   DOI
9 S. J. Lee, G. Khang, Y. M. Lee, and H. B. Lee, J. Biomater. Sci., Polym. Ed., 13, 197 (2002)   DOI   ScienceOn
10 S. K. Kim, K. D. Hong, J. W. Jang, S. J. Lee, M. S. Kim, C. W. Han, G. Khang, I. Lee, and H. B. Lee, Tissue Eng., Regen. Med., 1, 149 (2004)
11 G. Khang, C. S. Park, J. M. Rhee, S. J. Lee, Y. M. Lee, I. Lee, M. K. Choi, and H. B. Lee, Korea Polym. J., 9, 267 (2001)
12 G. Khang, E. K. Jeon, J. M. Rhee, I. Lee, S. J. Lee, and H. B. Lee, Macromol. Res., 11, 334 (2003)   DOI   ScienceOn
13 G. Khang, S. K. Kim, K. D. Hong, W. Y. Jang, C. W. Han, I. Lee, and H. B. Lee, Tissue Eng., Regen. Med., 1, 136 (2004)
14 N. Moriah and S. Lonnie, J. Biomed. Mater. Res., 59, 349 (2002)   DOI   ScienceOn
15 G. Khang, S. J. Lee, C. W. Han, J. M. Rhee, and H. B. Lee, 'Preparation and Characterization of Natural/Synthetic Hybrid Scaffolds', in Advances in Experimental Medicine and Biology, M. Elcin, Editor, Kluwer-Plerum Press, London, Vol 657, Chap. 17, pp 235-245 (2003)
16 G. Khang and H. B. Lee, 'Cell-synthetic Surface Interaction : Physicochemical Surface Modification', in Methods of Tissue Engineering, A. Atala and R. Lanza, Editors, Academic Press, San Diego, California, Chap. 67, pp 771-780 (2001)
17 K. Whang, C. H. Thomas, and K. E. H. Nuber, Polymer, 36, 837 (1995)   DOI   ScienceOn
18 K. Whang, K. E. Healy, D. R. Elenz, E. K. Nam, D. C. Tsai, C. H. Thomas, G. W. Nuber, F. H. Glorieux, and R. Travers, Tissue Eng., 5, 35 (1999)   DOI   ScienceOn
19 J. W. Jang, B. Lee, C. W. Han, I. Lee, H. B. Lee, and G. Khang, Polymer(Korea), 27, 226 (2003)
20 J. H. Aubert and R. L. Clough, Polymer, 26, 2047 (1985)   DOI   ScienceOn
21 D. J. Mooney, C. L. Mazzoni, C. Breuer, K. McNamara, D. Hem, J. P. Vacanti, and R. Langer, Biomaterials, 17, 115 (1996)   DOI   ScienceOn
22 G. Khang, M. S. Kim, S. H. Cho, I. Lee, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 1, 9 (2004)
23 S. A. Seo, J. H. Kim, G. Khang, J. M. Rhee, and H. B. Lee, J. Microencapsulation, 20, 569 (2003)
24 G. Khang, S. J. Lee, M. S. Kim, and H. B. Lee, 'Scaffolds : Tissue engineering', in Webster's Biomedical Engineering Handbook, S. Webster, Editor, John & Wiley Press, New York, in press (2005)
25 S. J. Lee, G. Khang, Y. M. Lee, and H. B. Lee, J. Biomater. Sci., Polym. Ed., 13, 197 (2002)   DOI   ScienceOn
26 S. P. Baldwin and W. M. Saltzman, Adv. Drug Deliv. Rev., 33, 71 (1998)   DOI   ScienceOn
27 C. W. Patrick, Jr., S. Kukreti, and L. V. Mclntire, Exp. Neurol., 138, 277 (1996)   DOI   ScienceOn
28 Y. Iwasaki, S. Sawada, N. Nakabayashi, G. Khang, H. B. Lee, and K. Ishihara, Biomaterials, 23, 3877 (2002)
29 K. Whang, T. K. Goldstick, and K. E. Healy, Biomaterials, 21, 2545 (2000)   DOI   ScienceOn
30 G. Khang, C. W. Choee, J. M. Rhee, and H. B. Lee, J. Appl. Polym. Sci., 85, 1253 (2002)   DOI   ScienceOn
31 G. Chen, T. Ushida, and T. Tateishi, Mater. Sci. Eng. C, 17, 63 (2001)   DOI   ScienceOn
32 L. E. Freed, J. C. Marquis, A. Nohria, J. Emmanual, A. G. Mikos, and R. Langer, J. Biomed. Mater. Res., 11, 27 (1993)
33 G. Khang, J. H. Jeon, J. C. Cho, and H. B. Lee, Polymer(Korea), 23, 3 (1999)
34 K. S. Seo, M. S. Kim, K. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 328 (2004)
35 A. M. Ambrosio, J. S. Sahota, Y. Khan, and C. T. Laurencin, J. Biomed. Mater. Res., 58, 295 (2001)   DOI   ScienceOn
36 G. Khang, J. M. Rhee, J. K. Jeong, J. S. Lee, M. S. Kim, S. H. Cho, and H. B. Lee, Macromol. Res., 11, 207 (2003)   DOI
37 S. J. Holland, B. J. Tighe, and P. L. Gould, J. Controlled Release, 4, 155 (1986)   DOI   ScienceOn
38 G. Chen, T. Ushida, and T. Tateishi, Biomaterials, 22, 2563 (2001)   DOI   PUBMED   ScienceOn