Implantation of Fetal Hepatocytes on Biodegradable Polymer Scaffolds

생분해성 고분자 담체를 이용한 태아 간세포의 이식

  • 곽소정 (한양대학교 공과대학 응용화학공학부) ;
  • 최동호 (순천향대학교 의과대학 외과학교) ;
  • 백승삼 (한양대학교 의과대학 병리학교) ;
  • 김상수 (서울대학교 생물화학공학 협동과) ;
  • 최차용 (서울대학교 생물화학공학 협동과) ;
  • 김병수 (한양대학교 공과대학 응용화학공학부)
  • Published : 2004.06.01

Abstract

Whole liver transplantation, the currently available treatment of end-stage liver disease, has limitations including serious donor shortage, fatal surgical complications, risk of allograft rejection, and the requirement of life-long immunosuppression. In this study, we investigated the possibility of reconstructing liver tissues in vivo by implanting fetal hepatocytes on polymer scaffolds as a potential method to replace the current treatments. Fetal hepatocytes were freshly isolated from mice and seeded onto porous mesh scaffolds fabricated from polyglycolic acid, a biodegradable synthetic polymer. The seeded scaffolds were implanted into peritoneal cavity of athymic mice for one week. As a control, fetal hepatocytes were implanted without scaffold. One week after transplantation, liver-like tissues formed. Histological and immunohistochemical analyses indicated that the hepatocyles and liver tissue structures (bile ducts) were present in the newly formed tissues. In the control group, no transplanted hepatocytes were observed. Theses preliminary results suggest that liver tissues may be regeneration by transplanting fetal hepatocytes on polymer scaffolds.

본 연구에서는 생분해성 고분자 담체인 PGA 담체에 부착된 간세포의 이식을 통해서 이식된 간세포가 괴사하지 않고 남아 있으며 간 조직 구조의 일종인 담세관 유사구조를 확인하였다. 조직공학적인 간세포 이식 방법의 개발은 간 질환에 새로운 치료방법 개발의 가능성을 열어줄 수 있다.

Keywords

References

  1. Hepatology v.20 no.1 Indications for orthotopic liver transplantation in fulminant liver failure Williams, R.;J. Wendon https://doi.org/10.1016/0270-9139(94)90265-8
  2. J. Hepatology v.24 Immunosuppression after liver transplantation Lucey, M. R. https://doi.org/10.1016/S0168-8278(96)80173-5
  3. Transplantation v.69 In situ split liver transplantation for two adult recipients Sommacale, D.;O. farges;G. M. Ettorre;P. Lebigot; A. Sauvanet; J. Marty;F. Durand;J. Belghiti
  4. Transplantation v.73 Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue-engineered polymer devices Lee. H.; R. A. Cusick;F. Browne;T. H. Kim;P. X ma;H. Utsunomiya;R. Langer;J. P. Vacanti https://doi.org/10.1097/00007890-200205270-00011
  5. Transplantation v.71 Hepatocyte transplantation using biodegradable matrices in ascorbic acid-deficient rats: comparison with heterotopically transplanted liver grafts Uyama, S.;P. M. Kaufmann;U. Kneser; H. C. Fiegel;J. M. Pollok;D. Kluth;J. P Vacanti;X. Rogiers https://doi.org/10.1097/00007890-200105150-00008
  6. Proc. Natl. Acad. Sci. USA v.15 Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation Ponder, K. P.;S. Gupta; F. Leland;G. Darlington;M. Finegold;J. DeMayo;F. D. Ledley;J. R. Chowdhury; S. L. Woo
  7. Science v.233 Replacement of liver function in rats by transplantation of microcarrier-attached hepatocytes Demetriou, A. A.;J. F. Whiting; D. Feldman;S. M .Levenson;N. R. Chowdhury;A. D. Moscioni;M. Kram;J. R. Chowdhury https://doi.org/10.1126/science.2426782
  8. J. Cell. Biol. v.43 High yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study Berry, M. N. https://doi.org/10.1083/jcb.43.3.506
  9. Science v.170 Transfer of bilirubin uridine diphosphate-glucuronyltransferase to enzyme deficient rats Rugstad, H. E.;S. H. Robinson;C. Yannoni;H. Armen https://doi.org/10.1126/science.170.3957.533
  10. J. Pediatr. Surg. v.27 Intrahepatic hepatocyte transplantation following subtotal hepatectomy in the recipient: A possible medel in the treatment of hepatic enzyme deficiency Zhang, H.;E. Miescher-Clemens;G. Drugas;S. M. Lee;P. Colombani https://doi.org/10.1016/0022-3468(92)90853-Y
  11. Proc. Natl. Acad. Sci. USA v.88 Mouse hepatocytes migrate to liver parenchyma and function indefinitely after intrasplenic transplantation Ponder, K. P.;S. Gupta; F. Leland;G. Darlington;M. Finegold;J. DeMayo;F. D. Ledley;J. R. Chowdhury; S. L. C. Woo https://doi.org/10.1073/pnas.88.4.1217
  12. Hepatology v.14 Permanant engraftment and function of hepatocytes delivered to the liver: implications for gene therapy and liver regeneration Gupta, S.;E. Aragona;R. P. Vemuru;K. K. Bharava;R. D. Burk;J. R. Chowdhury https://doi.org/10.1002/hep.1840140124
  13. Science v.192 Hepatocellular transplantation for metabolic deficiencies: Decrease of plasma bilirubin in Gunn rats Matas, A. J.;D. E. Sutherland;M. W. Steffes;S. M. Mauer;A. Lowe;R. L. Simmons;J. S. Najarian https://doi.org/10.1126/science.818706
  14. Surgery v.82 Hepatocellular transplantation in acute liver failure Sutherland, D. E.;M. Numata;A. J. Matas;R. L. Simmons;J. S. Najarian
  15. Transplant. Proc. v.11 Hepatocellular transplantation for treatment of D-galactosamine-induced acute liver failure in rats Sommer, B. G.;D. E. Sutherland;A. J. Matas;R. L. Simmons;J. S. Najarian
  16. Transplantation v.55 Selective intraportal hepatocyte transplantation in analbuminemic and Gunn rats Holzman, M. D.;J. Rozga;D. F. Neuzil;D. Griffin;A. D. Moscioni;A. A. Demetriou https://doi.org/10.1097/00007890-199306000-00002
  17. Transplantation v.63 Enhancement of proliferation of intrasplenically transplanted hepatocytes in cirrhotic rats by hepatic stimulatory substance Jiang, B.;M. Sawa;T. Yamamoto; S. Kasai https://doi.org/10.1097/00007890-199701150-00024
  18. Gastroenterology v.82 Observations on the fine structure of long-survived isolated hepatocytes inoculated into rat spleen Kusano, M.;M. Mito
  19. Gastroenterol. Jpn. v.13 Hepatocellular transplantation: Morphological study in hepatocytes transplanted into rat spleen Mito, M.;M. Kusano;T. Onishi;T. Saito;H. Ebata
  20. Transplant. Proc. v.13 Allogeneic and Xenogeneic hepatocyte transplantation Makowka, L.;L. E. Rotstein;R. E. Falk;J. A. Falk;R. Zuk;B. Langer;L. M. Blendis;M. J. Philips
  21. J. Pediatr. Surg. v.27 Intrahepatic hepatocyte transplantation following subtotal hepatectomy in the recipient : A possible model in the treatment of hepatic enzyme deficiency Zhang, H.;E. M. Clemens;G. Drugas;S. M. Lee; P. Colombani https://doi.org/10.1016/0022-3468(92)90853-Y
  22. Tramsplantation v.55 Delivery of whole liver-equivalent hepatocyte mass using polymer devices and hepatotrophic stimulation Uyama, S.;P. M. Kaufmann;T. Takeda;J. P. Vacanti https://doi.org/10.1097/00007890-199304000-00044
  23. Cell Transplant. v.3 The mesentery as a laminated vascular bed for hepatocyte transplantation Johnson, L. B.;J. Aiken;D. Mooney;B. L. Schoo;L. Griffith-Cima;R. Langer;J. P. Vacanti https://doi.org/10.1177/096368979400300403
  24. Tramsplantation v.45 The growth of transplanted liver cells within the pancreas Jaffe, V.;H. Darby;C. Selden;H. J. F. Hodgson https://doi.org/10.1097/00007890-198802000-00053
  25. Eur. Surg. Res. v.20 Transplantation of isolated hepatocytes into the pancreas Vroemen, J. P.;W. A. Buurman;C. J. van der Linden;R. Visser;K. P. Heirwegh;G. Kootstra
  26. Surgery v.105 Trophic factors from pancreatic islets in combined hepatocyte-islet allografts enhance hepatocellular survival Ricordi, C.;P. E. Lacy;M. P. Callery;P. W. Park;M. W. Flye
  27. Cnacer Res. v.42 Effects of partial hepatectomy on transplanted hepatocytes Jirtle, R. L.;G. Michalopoulos
  28. J. Pediatr. Surg. v.23 Selective cell transplantation using bioabsorbable artificial polymers as matrices Vacanti, J. P.;M. A. Morse;W. M. Saltzman;A. J. Domb;A. Perez-Atayde;R. Langer https://doi.org/10.1016/S0022-3468(88)80529-3
  29. Cell Transplant. v.3 no.2 Human fetal tissue research: practice, prospects, and policy Fine, A. https://doi.org/10.1177/096368979400300201
  30. Semin. Liver Dis. v.23 no.4 Diversity of hepatic stem cells in the fetal and adult liver Zheng, Y. W.;H. Taniguchi https://doi.org/10.1055/s-2004-815557