Improvement of the Biocompatibility of Chitosan Dermal Scaffold by Rigorous Dry Heat Treatment

  • Kim, Chun-Ho (Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences) ;
  • Park, Hyun-Sook (Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences) ;
  • Gin, Yong-Jae (Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences) ;
  • Son, Young-Sook (Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences) ;
  • Lim, Sae-Hwan (R&D Institute, Modern Tissue Technologies Inc.) ;
  • Park, Young-Ju (R&D Institute, Modern Tissue Technologies Inc.) ;
  • Park, Ki-Sook (R&D Institute, Modern Tissue Technologies Inc.) ;
  • Park, Chan-Woong (R&D Institute, Modern Tissue Technologies Inc.)
  • Published : 2004.08.01

Abstract

We have developed a rigorous heat treatment method to improve the biocompatibility of chitosan as a tissue-engineered scaffold. The chitosan scaffold was prepared by the controlled freezing and lyophilizing method using dilute acetic acid and then it was heat-treated at 110$^{\circ}C$ in vacuo for 1-3 days. To explore changes in the physicochemical properties of the heat-treated scaffold, we analyzed the degree of deacetylation by colloid titration with poly(vinyl potassium sulfate) and the structural changes were analyzed by scanning electron microscopy, Fourier transform infrared (FT-IR) spectroscopy, wide-angle X-ray diffractometry (WAXD), and lysozyme susceptibility. The degree of deacetylation of chitosan scaffolds decreased significantly from 85 to 30% as the heat treatment time increased. FT-IR spectroscopic and WAXD data indicated the formation of amide bonds between the amino groups of chitosan and acetic acids carbonyl group, and of interchain hydrogen bonding between the carbonyl groups in the C-6 residues of chitosan and the N-acetyl groups. Our rigorous heat treatment method causes the scaffold to become more susceptible to lysozyme treatment. We performed further examinations of the changes in the biocompatibility of the chitosan scaffold after rigorous heat treatment by measuring the initial cell binding capacity and cell growth rate. Human dermal fibroblasts (HDFs) adhere and spread more effectively to the heat-treated chitosan than to the untreated sample. When the cell growth of the HDFs on the film or the scaffold was analyzed by an MTT assay, we found that rigorous heat treatment stimulated cell growth by 1.5∼1.95-fold relative to that of the untreated chitosan. We conclude that the rigorous dry heat treatment process increases the biocompatibility of the chitosan scaffold by decreasing the degree of deacetylation and by increasing cell attachment and growth.

Keywords

References

  1. Biomaterials v.12 H. Fukuzaki;M. Yoshida;M. Asano;M. Kumakura;T. Mashimo https://doi.org/10.1016/0142-9612(91)90014-2
  2. Tissue Engineering and Regenerative Medicine J. H. Lee;J. J. Yoo(ed.);I. W. Lee(ed.)
  3. Advances in Chitin Science First International Conference of the European Chitin Society R. A. A. Muzzarelli
  4. Biomaterials v.9 R A. A. Muzzarelli;V. Baldassrre;F. Conit;P. Ferrara;G. Biagini https://doi.org/10.1016/0142-9612(88)90092-0
  5. Sixth World Biomaterials Congress Transactions Y. S. Son;Y. H. Youn;J. S. Lee;T. H. Kim;H. Y. Chung;S. H. Lee
  6. Macromol. Chem. Symp. v.15 C. H. Kim;C. Kim;H. S. Park;Y. S. Son
  7. J. Korean Ind. & Eng. Chem. v.10 C. H. Kim;E. S. Lee;Y. T. Han;B. Y. Kim;T. I. Sohn
  8. J. Ind. & Eng. Chem. v.8 C. H. Kim;K. S. Choi
  9. Biomaterials v.19 A. Hoekstra;H. Struszczyk;O. Kivekas https://doi.org/10.1016/S0142-9612(98)00060-X
  10. Biomaterials v.18 C. H. Su;C. S. Sun;W. Juan;C. H. Hu;W. T. Ke;M. T. Sheu https://doi.org/10.1016/S0142-9612(96)00167-6
  11. Yonago Acta mediaca v.35 T. Tanigawa;Y. Tanaka;K. Tomita;T. Sasaki;H. Sashiwa;H. Saimoto;Y. Shigemasa;Y. Okamoto;S. Minami;A. Matsuhashi
  12. J. Vet. Med. Sci. v.56 Y. Usami;Y. Okamoto;S. Minami;A. Matsuhashi;N. H. Kumazawa;S. Tanioka;Y. Shigemasa https://doi.org/10.1292/jvms.56.761
  13. J. Vet. Med. Sci. v.56 Y. Usami;Y. Okamoto;S. Minami;A. Matsuhashi;N. H. Kumazawa;S. Tanioka;Y. Shigemasa https://doi.org/10.1292/jvms.56.1215
  14. Biomaterials v.22 C. Chatelet;O. Damour;A. Domald
  15. Biomaterials v.19 A. Denuziere;D. Ferrier;O. Damour;A. Domard https://doi.org/10.1016/S0142-9612(98)00036-2
  16. Chitin and Chitosan M. Izume;T. Taira;T. Kimura;T. Miyata;G. Skjak-Braek(ed.);T. Anthonsen(ed.);P. Sandford(ed.)
  17. Agric. Biol. Chem. v.55 K. Ogawa https://doi.org/10.1271/bbb1961.55.2375
  18. J. Appl. Polym. Sci. v.60 A. Toffey;G. Samaranayake;C. E. Frazier;W. G. Glasser https://doi.org/10.1002/(SICI)1097-4628(19960404)60:1<75::AID-APP9>3.0.CO;2-S
  19. J. Biomat. Appl. v.10 S. B. Rao;C. P. Sharma https://doi.org/10.1177/088532829501000204
  20. J. Immunol. Method. v.65 T. Mosmann https://doi.org/10.1016/0022-1759(83)90303-4
  21. J. Biomed. Mater. Res. v.11 M. Chvapil https://doi.org/10.1002/jbm.820110508
  22. Inter. J. Pharm. v.232 G. C. Ritthidej;T. Phaechamud;T. Koizumi https://doi.org/10.1016/S0378-5173(01)00894-8
  23. Jpn. Anal. v.23 K. Kina;K. Tamura;N. Ishibashi https://doi.org/10.2116/bunsekikagaku.23.1082
  24. J. Microencapsul. v.19 S. G. Kumbar;A. R. Kulkarni;T. M. Aminabhavi https://doi.org/10.1080/02652040110065422
  25. Carbohydrate Research v.299 K. M. Varum;M. M. Myhr;R. J. N. Hjerde;O. Smidssrod https://doi.org/10.1016/S0008-6215(96)00332-1