• Title/Summary/Keyword: polyimide fiber

Search Result 46, Processing Time 0.024 seconds

Mechanical Properties and Wind Energy Harvesting Characteristics of PZT-Based Piezoelectric Ceramic Fiber Composites (PZT계 압전 세라믹 파이버 복합체의 기계적 물성과 압전 풍력 에너지 하베스팅 특성)

  • Lee, Min-Seon;Park, Jin-woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.90-98
    • /
    • 2021
  • Piezoelectric ceramic fiber composite (PCFC) was fabricated using a planar electrode printed piezoelectric ceramic fiber driven in transverse mode for small-scale wind energy harvester applications. The PCFC consisted of an epoxy matrix material and piezoelectric ceramic fibers sandwiched by interdigitated electrode (IDE) patterned polyimide films. The PCFC showed an excellent mechanical performance under a continuous stress. For the fabrication of PCB cantilever harvester, five -PCFCs were vertically attached onto a flexible printed circuit board (PCB) substrate, and then PCFCs were serially connected through a printed Cu circuit. The energy harvesting performance was evaluated applying an inverted structure, which imples its free leading edge located at an open end but the trailing edge at a clamped end, to enhance strain energy in a wind tunnel. The output voltage of the PCB cantilever harvester was increased as the wind speed increased. The maximum output power was 17.2 ㎼ at a resistance load of 200 ㏀ and wind speed of 9 m/s. It is considered that the PCB cantilever energy harvester reveals a potential use for wind energy harvester applications.

Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes (공중합체 폴리이미드를 이용한 기체분리막의 특성평가)

  • Lee, Jung Moo;Lee, Myeong Geon;Kim, Se Jong;Koh, Hyung Chul;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.223-230
    • /
    • 2015
  • We synthesized novel polyimides with high gas permeability and selectivity for application of gas separation membrane. 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and two kinds of amines with high permeability and solubility were used to prepare the novel polymide. 2,4,6-Trimethyl-1,3-phenylenediamine (DAM) was used to improve gas permeability and 4,4-Methylenedianiline was used to improve the gas selectivity respectively. The polyimide copolymers were synthesized by commercial chemical imidization method using Triethylamine and Acetic anhydride and their average molecular weights were over 100,000 g/mol. The glass temperature (Tg) and the thermal degradation temperature were characterized using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The synthesized copolymers showed high Tg over $300^{\circ}C$ and high thermal degradation temperature over $500^{\circ}C$. The gas permeation properties were measured by time-lag equipment. Although general polyimides showed very low gas permeability, synthesized polyimide copolymer showed high $O_2$ permeability of 10.1 barrer with high $O_2/N_2$ selectivity around 5.3. From this result, we confirm that these membranes have possibility to apply to gas separation membrane.

A Plastic BGA Singulation using High Thermal Energy of $2^{nd}$ Harmonic Nd:YAG Laser

  • Lee, Kyoung-Cheol;Baek, Kwang-Yeol;Lee, Cheon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.309-313
    • /
    • 2002
  • In this paper, we have studied minimization of the kerf-width and surface burning, which occurred after the conventional singulation process of the multi-layer BGA board with copper, polyethylene and epoxy glass fiber. The high thermal energy of a pulsed Nd:YAG laser is used to cut the multi-layer board. The most considerable matter in the laser cutting of the multi-layer BGA boards is their different absorption coefficient to the laser beam and their different heat conductivity. The cut mechanism of a multi-layer BGA board using a 2$^{nd}$ harmonic Nd:YAG laser is the thermal vaporization by high temperature rise based on the Gaussian profile and copper melting point. In this experiment, we found that the sacrifice layer and Na blowing are effective in minimizing the surface burning by the reaction between oxygen in the air and the laser beam. In addition, N2 blowing reduces laser energy loss by debris and suppresses surface oxidation. Also, the beam incidence on the epoxy layer compared to polyimide was much more suitable to reduce damage to polyimide with copper wire for the multi layer BGA singulation. When the polyester double-sided tape is used as a sacrifice layer, surface carbonization becomes less. The SEM, non-contact 3D inspector and high-resolution microscope are used to measure cut line-width and surface morphology.

Study on the Gas Separation of Carbon Molecular Sieve (CMS) Membrane for Recovering the Perfluorocompound Gases from the Electronics Industry (전자산업 배출 불화가스 회수를 위한 탄소분자체 분리막의 기체분리 연구)

  • Jeong, Su Jung;Lim, Joo Hwan;Han, Sang Hoon;Koh, Hyung Chul;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.220-228
    • /
    • 2016
  • Carbon molecular sieve (CMS) hollow fiber membranes were prepared by carbonizing a polyimide precursor manufactured by non-solvent induced phase separation process. Gas separation performance of CMS hollow fiber membrane was investigated on the effect of three carbonization conditions. CMS membrane with the highest gas separation performance was obtained at the pyrolysis temperature of $250-450^{\circ}C$: $N_2$, $SF_6$, and $CF_4$ permeance were 20, 0.32, 0.48 GPU, respectively, and $N_2/SF_6$ and $N_2/CF_4$ selectivities were 62 and 42, respectively. In the $SF_6/CF_4/N_2$ mixture gas test, when the stage cut was 0.2, the recovery ratio of $SF_6$ and $CF_4$ was over 99% and 98%. $SF_6$ concentration ratio was 4.5 times higher than the $SF_6$ concentration at the feed side. From the results, it was concluded that CMS membrane was one of the promising membranes for recovery Perfluorocompound gases process.

Photoisomerization and Photo-induced Optical Anisotropy of Polymethacrylate Containing Aminonitroazobenzene

  • Park, Dong-Hoon;Cho, Kang-Jin
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.123-130
    • /
    • 2001
  • Photoresponsive side chain copolymer and homopolymer containing an aminonitroazobenzene were synthesized for studying photoisomerization behavior and photo-induced anisotropy. Trans-to-cis photoisomerization was observed under the exposure of a circularly polarized visible light with UV-Vis absorption spectroscopy. Reorientation of polar azobenzene molecules induced optical anisotropy under a linearly polarized light at 532nm. Polarized absorption spectroscopy was employed to investigate the anisotropy of the polymer film during irradiationg of the excitation light. Layers of two photosensitive polymers were used for aligning liquid crystal(LC) molecules instead of one of the rubbed polyimide layers in the conventional twisted nematic cell. For producing homogeneous alignment of a nematic LC molecule, a linearly polarized light was exposed to the films of two polymers. The stability of the LC alignment upon the linearly polarized light exposure was also studied.

  • PDF

Fabrication and characterization of InGaAs Separate Absorption Grading Multiplication Avalache Photodiodes for 2.5 Gbps Optical Fiber Communication System (2.5Gbps 광통신용 InGaAs separate absorption grading multiplication (SAGM) advanche photodiode의 제작 및 특성분석)

  • 유지범;박찬용;박경현;강승구;송민규;오대곤;박종대;김흥만;황인덕
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.340-346
    • /
    • 1994
  • 2.5Gbps 광통신시스템용 수광소자로서 charge plate층을 갖는 링구조의 separate absorption grading multiplication avalanche photodiode를 제작하고 그 특성을 조사 분석하였다. Avalanche Photodiode의 제작은 Metal-Organic Chemical Vapor Deposition 과 Liquid Phase Epitaxy법을 이용한 에피성장과 Br:Methanol을 이용한 채널식각 방법을 사용하였고, passivation과 평탄화는 photosensitive polyimide를 이용하였다. 제작된 ADP는 10nA 이하의 작은 누설전류를 나타내었고, -38~39 V의 항복전압을 나타내었다. 제작된 ADP를 GaAs FET hybrid 전치증폭기와 결합하여 2.5Gbps 속도에서 $2^{23}-1$의 길이를 갖는 입력 광신호에 대해 $ 10^{-10}$ Bit Error Rate에서 -31.0dBm의 수신감도를 얻었다.

  • PDF

Breakdown, V-t and Degradation Characteristics of Insulation in Liquid Nitrogen for HTS Transformer (고온초전도 변압기를 위한 액체질소 중 절연 파괴, V-t. 열화 특성)

  • Nguyen, Van-Dung;Joung, Jong-Man;Baek, Seung-Myeong;Lee, Chang-Hwa;Suck, Song-Hee;Kim, Sang-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.316-323
    • /
    • 2004
  • HTS transformer is one of the most promising devices to supply enough electric energy for quick increase consumption. However, for practical design of the HTS transformer, it is necessary to establish the research on breakdown, V-t characteristics, degradation, and so on. In this paper, we discussed breakdown characteristics and V-t characteristics of polyimide/L$N_2$ and glass fiber reinforced plastic/$LN_2$ composite insulations. These composite insulations have been used as turn-to-turn and layer-to-layer insulations for HTS transformer respectively, Moreover, we investigated the degradation of these insulation samples after breakdown using microscope and SEM photograph.

Dynamic Characteristics of Rotating Composite Cantilever Beam with a Breathing Crack (Breathing Crack이 있는 회전하는 복합재료 보의 동적 특성에 관한 연구)

  • Kim, Sung-Soo;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.527-533
    • /
    • 2000
  • It is investigated that the characteristics of rotating cantilevered composite beam with a breathing crack. In the present study, the crack is modeled as a breathing crack which opens and closes with the motion of the unidirectional graphite-fiber reinforced polyimide beam. For the finite element analysis, the cracked element is modelled by the local flexibility matrix calculated on the basis of fracture mechanics using Castiligano theorem. Rotating beam is considered only transverse bending motion so that the element includes two degrees of freedom per node such as the transverse deflection and slope. The time history and frequency response function of the beam with a breathing crack are studied by Newmark direct time integration method and FFT(Fast Fourier Transform)simulation. Effects of various parameters such as the crack depths, crack locations, ply angles, volume fraction ratios, and rotating speeds of the beam are also studied. Numerical results indicate that it is more reliable to be modelled as a breathing crack than an open crack.

  • PDF

Study on the Multi-stage Hollow Fiber Membrane Modules for SF6 Gas Separation (불화가스 분리를 위한 중공사막 모듈의 다단 기체분리공정 연구)

  • Jeong, Su Jung;Lim, Joo Hwan;Koh, Hyung Chul;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.159-165
    • /
    • 2016
  • Polyimide hollow fiber membrane modules were prepared in order to investigate the process of multi stage gas separation. The modules performance was carried out using 50/50 of $N_2/SF_6$ mixed gas. The membrane modules has been tested for measuring gas flow rate and concentration under various stage cut at 0.5 MPa. The membrane modules showed a high recovery ratio at the same stage cut as $N_2/SF_6$ selectivity increased. Two stage process was fulfilled for improving $SF_6$ recovery ratio and $SF_6$ concentration. Eventually, two stage process showed higher performance of $SF_6$ recovery ratio and concentration ($SF_6$ recovery ratio = 95%, $SF_6$ conc. = 98%).

$H_{2}S$ Removal and $CO_{2}/CH_{4}$ Separation of Ternary Mixtures Using Polyimide Hollow Fiber Membrane (폴리이미드 중공사막을 이용한 혼합기체로부터 $H_{2}S$ 제거 및 $CO_{2}/CH_{4}$ 분리에 관한 연구)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.250-255
    • /
    • 2011
  • In this study, by using the polymeric membrane separation process, the $CO_{2}/CH_{4}$ separation and $H_{2}S$ removal from biogas were performed in order to $CH_{4}$ purification and enrichment for the fuel cell energy source application. Fibers were spun by dry/wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a porous, sponge substructure. The permeance of $CO_{2}$ and $CO_{2}/CH_{4}$ selectivity increased with pressure and temperature. Mixture gas with increasing pressure and temperature, removal efficiency of the $CO_{2}$ and $H_{2}S$ were decreased while concentration of $CH_{4}$ was increased up to 100%. When retentate flow rate was increased with the decreasing of pressure and temperature the $CH_{4}$ recovery ratio in retentate side was increased while the $CH_{4}$ purity in retentate side was decreased.