Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.223

Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes  

Lee, Jung Moo (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Lee, Myeong Geon (Aekyung Petrochemical Co., LTD.)
Kim, Se Jong (Airrane Co., Ltd.)
Koh, Hyung Chul (Airrane Co., Ltd.)
Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Publication Information
Membrane Journal / v.25, no.3, 2015 , pp. 223-230 More about this Journal
Abstract
We synthesized novel polyimides with high gas permeability and selectivity for application of gas separation membrane. 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and two kinds of amines with high permeability and solubility were used to prepare the novel polymide. 2,4,6-Trimethyl-1,3-phenylenediamine (DAM) was used to improve gas permeability and 4,4-Methylenedianiline was used to improve the gas selectivity respectively. The polyimide copolymers were synthesized by commercial chemical imidization method using Triethylamine and Acetic anhydride and their average molecular weights were over 100,000 g/mol. The glass temperature (Tg) and the thermal degradation temperature were characterized using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The synthesized copolymers showed high Tg over $300^{\circ}C$ and high thermal degradation temperature over $500^{\circ}C$. The gas permeation properties were measured by time-lag equipment. Although general polyimides showed very low gas permeability, synthesized polyimide copolymer showed high $O_2$ permeability of 10.1 barrer with high $O_2/N_2$ selectivity around 5.3. From this result, we confirm that these membranes have possibility to apply to gas separation membrane.
Keywords
Polyimide; 6FDA-pMDA-DAM polyimide; chemical imidazation; gas separation; hollow fiber; membrane;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. R. Li, Y. Ma, M. C. McCarthy, J. Sculleya, J. Yub, H. K. Jeong, P. B. Balbuena, and H. C. Zhou, "Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks", J. Membr. Sci., 325, 1 (2008).   DOI
2 C. E. Powell and G. G. Qiao, "Polymeric $CO_{2}/N_{2}$ gas separation membranes for the capture of carbon dioxide from power plant flue gases", J. Membr. Sci., 279, 1 (2006).   DOI
3 J. H. Ahn, W. J. Chung, I. Pinnau, and M. D. Guiver, "Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation", J. Membr. Sci., 314, 123 (2008).   DOI
4 S. E. B. Kruczek and T. Matsuura, "Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance", J. Membr. Sci., 167, 203 (2000).   DOI
5 M. R. Coleman and W. J. Koros, "Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications", J. Membr. Sci., 50, 285 (1990).   DOI
6 C. H. Jung, J. E. Lee, S. H. Han, H. B. Park, and Y. M. Lee, "Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation", J. Membr. Sci., 350, 301 (2010).   DOI
7 T. S. Chung, W. H. Lin, and R. H. Vora, "Gas transport properties of 6FDA-durene/1,3-phenylenediamine (mPDA) copolyimides", J. Appl. Polym. Sci., 81, 3552 (2001).   DOI
8 E. H. Kim, C. Y. Park, and J. H. Kim, "Gas Transport Properties of Soluble Polyimides Containing Alicyclic Dianhydride", Membr. J., 24, 100 (2014).   DOI
9 L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J Membr. Sci., 62, 165 (1991).   DOI
10 S. Xiao, X. Feng, and R. Y. M. Huang, "Correlation Synthetic 6FDA-ODA Copolyimide Membranes for Gas Separation and Pervaporation: Correlation of Separation Properties with Diamine Monomers" Polymer Engineering & Science, 48, 795 (2008).   DOI
11 J. Kruse, J. Kanzow, K. Ratzke, F. Faupel, M. Heuchel, J. Frahn, and D. Hofmann, "Free volume in polyimides: positron annihilation experiments and molecular modeling", Macromolecules, 38, 9638 (2005).   DOI
12 H. C. Koh, S. Y. Ha, and S. Y. Nam, "Preparation and Properties of Hollow Fiber Membrane for Gas Separation Using CTA", Membr. J., 21, 98 (2010).
13 Y. Yang, Z. K. Zhu, J. Yin, X. Y. Wang, and Z. E. Qi, "Preparation and properties of hybrids of organo soluble polyimide and montmorillonite with various chemical surface modification methods", Polymer, 40, 4407 (1999).   DOI
14 S. J. Kim, S. M. Woo, H. Y. Hwang, H. C. Koh, S. Y. Ha, H. S. Choi, and S. Y. Nam, "Preparation and Properties of Chlorine-Resistance Loose Reverse Osmosis Hollow-fiber Membrane", Membr. J., 20, 304 (2010).