Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.3.220

Study on the Gas Separation of Carbon Molecular Sieve (CMS) Membrane for Recovering the Perfluorocompound Gases from the Electronics Industry  

Jeong, Su Jung (Airrane Co. Ltd.)
Lim, Joo Hwan (Airrane Co. Ltd.)
Han, Sang Hoon (Airrane Co. Ltd.)
Koh, Hyung Chul (Airrane Co. Ltd.)
Ha, Seong Yong (Airrane Co. Ltd.)
Publication Information
Membrane Journal / v.26, no.3, 2016 , pp. 220-228 More about this Journal
Abstract
Carbon molecular sieve (CMS) hollow fiber membranes were prepared by carbonizing a polyimide precursor manufactured by non-solvent induced phase separation process. Gas separation performance of CMS hollow fiber membrane was investigated on the effect of three carbonization conditions. CMS membrane with the highest gas separation performance was obtained at the pyrolysis temperature of $250-450^{\circ}C$: $N_2$, $SF_6$, and $CF_4$ permeance were 20, 0.32, 0.48 GPU, respectively, and $N_2/SF_6$ and $N_2/CF_4$ selectivities were 62 and 42, respectively. In the $SF_6/CF_4/N_2$ mixture gas test, when the stage cut was 0.2, the recovery ratio of $SF_6$ and $CF_4$ was over 99% and 98%. $SF_6$ concentration ratio was 4.5 times higher than the $SF_6$ concentration at the feed side. From the results, it was concluded that CMS membrane was one of the promising membranes for recovery Perfluorocompound gases process.
Keywords
polyimide; carbon molecular sieve; hollow fiber membrane; sulfur hexafluoride ($SF_6$); Tetrafluoromethane ($CF_4$); gas separation;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Y. Kusuki, H. Shimazaki, N. Tanihara, S. Nakanishi, and T. Yoshinaga, "Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane", J. Membr. Sci., 134, 245 (1997).   DOI
2 A. B. Fuertes, "Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes", Carbon, 39, 697 (2001).   DOI
3 E. M. Maya, A. Tena, J. de Abajo, J. G. de la Campa, and A. E. Lozano, "Partially pyrolyzed membranes (PPMs) derived from copolyimides having carboxylic acid groups. Preparation and gas transport properties", J. Membr. Sci., 349, 386 (2010).
4 S. J. Jeong, J. H. Lim, H. C. Koh, and S. Y. Ha, "Study on the multi-stage hollow fiber membrane modules for $SF_6$ gas separation", Membr. J., 26, 162 (2016).
5 H. C. Ko, S. Y. Ha, S. M. Woo, S. Y. Nam, B. S. Lee, C. S. Lee, and H. M. Choi, "Separation and purification of bio gas by hollow fiber gas separation membrane module", Membr. J., 21, 177 (2011).
6 Intergovernmental Panel on Climate Change (IPCC), 1995 Report of the Scientific Assessment Working Group of IPCC (1995).
7 O. Yamamoto, T. Takkuma, and M. Kinouchi, "Recovery of $SF_6$ from $N_2/SF_6$ gas mixtures by using a polymer membrane", IEEE Electr. Insul. Mag., 18(3), 32 (2002).   DOI
8 P. Jannick, "A novel purification process for used $SF_6$ from electrical installations," International Conference on $SF_6$ and the Environment, December 1-3 (2004).
9 H. Lee, M. Lee, H. Lee, and S. Lee, "Permeation and permselectivity variation of $O_2$, $CF_4$, and $SF_6$ through polymeric hollow fiber membranes", Membr. J., 20, 249 (2010).
10 T. H. Kim, J. C. Jeong, J. M. Park, and C. H. Woo, "A numerical analysis of direct contact membrane distillation for hollow fiber membrane", Membr. J., 20, 267 (2010).
11 T. Beppu, "New alternative gas process feasibility study for PFC emission reduction from semiconductor CVD chamber cleaning", Greenhouse Gas Control Technologies - 6th International Conference, Volume II, 1269 (2003).
12 T. Pulles and A. van Amstel, "An overview of non-$CO_2$ greenhouse gases", J. Interg. Environ. Sci., 7(1), 3 (2010).   DOI
13 S.-H. Lee, N.-K. Park, S.-H. Yoon, W.-C. Chang, and T.-J. Lee, "Catalytic decomposition of $SF_6$ by hydrolysis and oxidation over ${\gamma}-Al_2O_3$," Clean Technol., 15(4), 275 (2009).
14 A. A. Lindley and A. McCulloch, "Regulating to reduce emissions of fluorinated greenhouse gases", J. Fluorine Chem., 126, 1457 (2005).   DOI
15 S. E. Nam, A. Park, and Y. I. Park, "Separation and recovery of F-gases", Membr. J., 23, 190 (2013).
16 K. H. Seong, J. S. Song, H. C. Koh, S. Y. Ha, M. H. Han, and C. H. Cho, "Effect of carbonization conditions on gas permeation of methyl imide based carbon molecular sieve hollow fiber membranes", Membr. J., 23, 335 (2013).
17 J. Koresh and A. Softer, "Molecular sieve carbon permselective membrane. Part 1. Presentation of a new device for gas mixture separation", Sep. Sci. Technol., 18, 723 (1983).   DOI
18 Y. K. Kim, H. B. Park, and Y. M. Lee, "Preparation and characterization of carbon molecular sieve membranes derived from BTDA-ODA polyimide and their gas separation properties" J. Membr. Sci., 255, 267 (2005).
19 Y. K. Kim, H. B. Park, and Y. M. Lee, "Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their separation properties", J. Membr. Sci., 243, 11 (2004).
20 J. M. Lee, M. G. Lee, S. J. Kim, H. C. Koh, and S. Y. Nam, "Characterization of gas permeation properties polyimide copolymer membaranes", Membr. J., 25, 225 (2015).
21 H. J. Lee, M. W. Lee, H. K. Lee, H. S. Choi, and S. H. Lee, "Recovery of $SF_6$ gas from gaseous mixture ($SF_6/N_2/O_2/CF_4$) through polymeric membranes", Membr. J., 21, 23 (2011).
22 H. J. Lee, M. W. Lee, H. K. Lee, and S. H. Lee, "Permeation and permselectivity variation of $O_2$, $CF_4$ and $SF_6$ through polymeric hollow fiber membranes", Membr. J., 20, 250 (2010).
23 D. H. Kim, Y. M. An, H. D. Jo, J. S. Park, and H. K. Lee, "Studies on the $N_2/SF_6$ permeation behaviors using the polyethersulfone hollow fiber membranes", Membr. J., 19, 244 (2009).