Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.2.90

Mechanical Properties and Wind Energy Harvesting Characteristics of PZT-Based Piezoelectric Ceramic Fiber Composites  

Lee, Min-Seon (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
Park, Jin-woo (Department of Materials Science and Engineering, Yonsei University)
Jeong, Young-Hun (Optic & Electronic Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.2, 2021 , pp. 90-98 More about this Journal
Abstract
Piezoelectric ceramic fiber composite (PCFC) was fabricated using a planar electrode printed piezoelectric ceramic fiber driven in transverse mode for small-scale wind energy harvester applications. The PCFC consisted of an epoxy matrix material and piezoelectric ceramic fibers sandwiched by interdigitated electrode (IDE) patterned polyimide films. The PCFC showed an excellent mechanical performance under a continuous stress. For the fabrication of PCB cantilever harvester, five -PCFCs were vertically attached onto a flexible printed circuit board (PCB) substrate, and then PCFCs were serially connected through a printed Cu circuit. The energy harvesting performance was evaluated applying an inverted structure, which imples its free leading edge located at an open end but the trailing edge at a clamped end, to enhance strain energy in a wind tunnel. The output voltage of the PCB cantilever harvester was increased as the wind speed increased. The maximum output power was 17.2 ㎼ at a resistance load of 200 ㏀ and wind speed of 9 m/s. It is considered that the PCB cantilever energy harvester reveals a potential use for wind energy harvester applications.
Keywords
Piezoelectric; Ceramic fiber; Wind energy; Aeroelastic flutter energy harvesting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Elahi, M. Eugeni, F. Fune, L. Lampani, F. Mastroddi, G. P. Romano, and P. Gaudenzi, Micromachines, 11, 933 (2020). [DOI: https://doi.org/10.3390/mi11100933]   DOI
2 M. Zhou, Q. Chen, Z. Xu, and W. Wang, AIP Adv., 9, 035213 (2019). [DOI: https://doi.org/10.1063/1.5082811]   DOI
3 W. J. Su and W. Y. Lin, Int. J. Mech. Sci., 173, 105457 (2020). [DOI: https://doi.org/10.1016/j.ijmecsci.2020.105457]   DOI
4 F. M. Gharghani, M. A. Bijarchi, O. Mohammadi, and M. B. Shafii, Int. J. Low-Carbon Tech., (In press). [DOI: https://doi.org/10.1093/ijlct/ctaa060]   DOI
5 J. D. Hobeck and D. J. Inman, Smart Mater. Struct., 21, 105024 (2012). [DOI: https://doi.org/10.1088/0964-1726/21/10/105024]   DOI
6 H. Liu, S. Zhang, T. Kobayashi, T. Chen, and C. Lee, Micro Nano Lett., 9, 286 (2014). [DOI: https://doi.org/10.1049/mnl.2013.0750]   DOI
7 D. Zhao, X. Hu, T. Tan, Z. Yan, and W. Zhang, Energy Convers. Manage., 222, 113260 (2020). [DOI: https://doi.org/10.1016/j.enconman.2020.113260]   DOI
8 J. Wang, L. Geng, S. Zhou, Z. Zhang, Z. Lai, and D. Yurchenko, Acta Mech. Sin., 36, 592 (2020). [DOI: https://doi.org/10.1007/s10409-020-00928-5]   DOI
9 L. Zhao and Y. Yang, Smart Struct. Syst., 19, 67 (2017). [DOI: https://doi.org/10.12989/sss.2017.19.1.067]   DOI
10 J. Liu, H. Zuo, W. Xia, Y. Luo, D. Yao, Y. Chen, K. Wang, and Q. Li, Microelectron. Eng., 231, 111333 (2020). [DOI: https://doi.org/10.1016/j.mee.2020.111333]   DOI
11 J.A.D.C. Dias, V.C.D. Sousa, A. Erturk, and C.D.M. Junior, Smart Mater. Struct., 29, 105006 (2020). [DOI: https://doi.org/10.1088/1361-665X/ab9add]   DOI
12 A. Mohammadnia, A. Rezania, B. M. Ziapour, F. Sedaghati, and L. Rosendahl, Energy Convers. Manage., 205, 112352 (2020). [DOI: https://doi.org/10.1016/j.enconman.2019.112352]   DOI
13 Y. Xie, S. Wang, S. Niu, L. Lin, Q. Jing, Y. Su, Z. Wu, and Z. L. Wang, Nano Energy, 6, 129 (2014). [DOI: https://doi.org/10.1016/j.nanoen.2014.03.015]   DOI
14 H. Mutsuda, S. Rahmawati, N. Taniguchi, T. Nakashima, and Y. Doi, Sustainable Energy Technol. Assess., 35, 160 (2019). [DOI: https://doi.org/10.1016/j.seta.2019.07.001]   DOI
15 E. Celik, E. Kurt, and N. Ozturk, Int. J. Electron., 107, 226 (2019). [DOI: https://doi.org/10.1080/00207217.2019.1643039]   DOI
16 http://ko.wikipedia.org/wiki/%ED%92%8D%EB%A0%A5_%EB%B0%9C%EC%A0%84 (2020).
17 W. Wang, X. He, X. Wang, M. Wang, and K. Xue, Sens. Actuators, A, 279, 467 (2018). [DOI: https://doi.org/10.1016/j.sna.2018.06.059]   DOI
18 J. Wang, S. Gu, C. Zhang, G. Hu, G. Chen, K. Yang, H. Li, Y. Lai, G. Litak, and D. Yurchenko, Energy Convers. Manage., 213, 112835 (2020). [DOI: https://doi.org/10.1016/j.enconman.2020.112835]   DOI
19 Y. Feng, L. Zhang, Y. Zheng, D. Wang, F. Zhou, and W. Liu, Nano Energy, 55, 260 (2019). [DOI: https://doi.org/10.1016/j.nanoen.2018.10.075]   DOI
20 W. Sun, Z. Ding, Z. Qin, F. Chu, and Q. Han, Nano Energy, 70, 104526 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.104526]   DOI
21 M. Perez, S. Boisseau, P. Gasnier, J. Willemin, M. Geisler, and J. L. Reboud, Smart Mater. Struct., 25, 045015 (2016). [DOI: https://doi.org/10.1088/0964-1726/25/4/045015]   DOI
22 S. Ju, S. H. Chae, Y. Choi, and C. H Ji, Sens. Actuators, A, 226, 126 (2015). [DOI: https://doi.org/10.1016/j.sna.2015.02.025]   DOI
23 L. Nelson, C. Bowen, R. Stevens, M. Cain, and M. Stewart, Proc. Smart Structures and Materials 2003: Active Materials: Behavior and Mechanics (Smart Structures and Materials, San Diego, USA, 2003) p. 556. [DOI: https://doi.org/10.1117/12.484738]   DOI
24 P. K. Vallittu, J. Prosthet. Dent., 81, 318 (1999). [DOI: https://doi.org/10.1016/S0022-3913(99)70276-3]   DOI
25 Z. Lu, Q. Wen, X. He, and Z. Wen, Appl. Sci., 9, 4823 (2019). [DOI: https://doi.org/10.3390/app9224823]   DOI
26 B. Yan, N. Yu, L. Zhang, H. Ma, C. Wu, K. Wang, and S. Zhou, Smart Mater. Struct., 29, 025022 (2020). [DOI: https://doi.org/10.1088/1361-665x/ab62e1]   DOI
27 M. Bi, Z. Wu, S. Wang, Z. Cao, Y. Cheng, X. Ma, and X. Ye, Nano Energy, 75, 104968 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.104968]   DOI