DOI QR코드

DOI QR Code

Study on the Gas Separation of Carbon Molecular Sieve (CMS) Membrane for Recovering the Perfluorocompound Gases from the Electronics Industry

전자산업 배출 불화가스 회수를 위한 탄소분자체 분리막의 기체분리 연구

  • Received : 2016.06.10
  • Accepted : 2016.06.28
  • Published : 2016.06.30

Abstract

Carbon molecular sieve (CMS) hollow fiber membranes were prepared by carbonizing a polyimide precursor manufactured by non-solvent induced phase separation process. Gas separation performance of CMS hollow fiber membrane was investigated on the effect of three carbonization conditions. CMS membrane with the highest gas separation performance was obtained at the pyrolysis temperature of $250-450^{\circ}C$: $N_2$, $SF_6$, and $CF_4$ permeance were 20, 0.32, 0.48 GPU, respectively, and $N_2/SF_6$ and $N_2/CF_4$ selectivities were 62 and 42, respectively. In the $SF_6/CF_4/N_2$ mixture gas test, when the stage cut was 0.2, the recovery ratio of $SF_6$ and $CF_4$ was over 99% and 98%. $SF_6$ concentration ratio was 4.5 times higher than the $SF_6$ concentration at the feed side. From the results, it was concluded that CMS membrane was one of the promising membranes for recovery Perfluorocompound gases process.

비용매 유도 상분리(NIPS) 법으로 제조된 폴리이미드 전구체를 이용하여 탄소분자체 중공사 분리막을 제조하였으며, 온도변화에 따른 열처리 조건이 탄소분자체 중공사막의 기체 분리 특성에 미치는 영향을 고찰하였다. 열처리 온도 $250{\sim}450^{\circ}C$에서 승온 속도, 안정화 시간을 조정하여 최적화 하였을 때, 중공사 분리막의 단일기체 $N_2$, $SF_6$, $CF_4$ 투과도는 각각 20, 0.32, 0.48 GPU이었고, $N_2/SF_6$ 선택도는 62, $N_2/CF_4$ 선택도는 42로 가장 높은 값을 나타내었다. $SF_6/CF_4/N_2$ 혼합기체 평가에서는 0.5 MPa에서 stage cut이 0.2일 때, $SF_6$, $CF_4$ 회수율이 각각 99, 98% 이상으로 높게 나타났고, 농축농도는 stage cut 0.8에서 주입농도의 4.5배 이상이었다. 이로부터 제조된 탄소분자체 중공사 분리막은 불화가스 회수용 분리막으로써 우수한 소재임을 확인할 수 있었다.

Keywords

References

  1. Intergovernmental Panel on Climate Change (IPCC), 1995 Report of the Scientific Assessment Working Group of IPCC (1995).
  2. O. Yamamoto, T. Takkuma, and M. Kinouchi, "Recovery of $SF_6$ from $N_2/SF_6$ gas mixtures by using a polymer membrane", IEEE Electr. Insul. Mag., 18(3), 32 (2002). https://doi.org/10.1109/MEI.2002.1014965
  3. P. Jannick, "A novel purification process for used $SF_6$ from electrical installations," International Conference on $SF_6$ and the Environment, December 1-3 (2004).
  4. H. Lee, M. Lee, H. Lee, and S. Lee, "Permeation and permselectivity variation of $O_2$, $CF_4$, and $SF_6$ through polymeric hollow fiber membranes", Membr. J., 20, 249 (2010).
  5. T. H. Kim, J. C. Jeong, J. M. Park, and C. H. Woo, "A numerical analysis of direct contact membrane distillation for hollow fiber membrane", Membr. J., 20, 267 (2010).
  6. H. C. Ko, S. Y. Ha, S. M. Woo, S. Y. Nam, B. S. Lee, C. S. Lee, and H. M. Choi, "Separation and purification of bio gas by hollow fiber gas separation membrane module", Membr. J., 21, 177 (2011).
  7. T. Beppu, "New alternative gas process feasibility study for PFC emission reduction from semiconductor CVD chamber cleaning", Greenhouse Gas Control Technologies - 6th International Conference, Volume II, 1269 (2003).
  8. T. Pulles and A. van Amstel, "An overview of non-$CO_2$ greenhouse gases", J. Interg. Environ. Sci., 7(1), 3 (2010). https://doi.org/10.1080/1943815X.2010.505241
  9. S.-H. Lee, N.-K. Park, S.-H. Yoon, W.-C. Chang, and T.-J. Lee, "Catalytic decomposition of $SF_6$ by hydrolysis and oxidation over ${\gamma}-Al_2O_3$," Clean Technol., 15(4), 275 (2009).
  10. A. A. Lindley and A. McCulloch, "Regulating to reduce emissions of fluorinated greenhouse gases", J. Fluorine Chem., 126, 1457 (2005). https://doi.org/10.1016/j.jfluchem.2005.09.011
  11. S. E. Nam, A. Park, and Y. I. Park, "Separation and recovery of F-gases", Membr. J., 23, 190 (2013).
  12. J. Koresh and A. Softer, "Molecular sieve carbon permselective membrane. Part 1. Presentation of a new device for gas mixture separation", Sep. Sci. Technol., 18, 723 (1983). https://doi.org/10.1080/01496398308068576
  13. Y. K. Kim, H. B. Park, and Y. M. Lee, "Preparation and characterization of carbon molecular sieve membranes derived from BTDA-ODA polyimide and their gas separation properties" J. Membr. Sci., 255, 267 (2005).
  14. Y. K. Kim, H. B. Park, and Y. M. Lee, "Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their separation properties", J. Membr. Sci., 243, 11 (2004).
  15. K. H. Seong, J. S. Song, H. C. Koh, S. Y. Ha, M. H. Han, and C. H. Cho, "Effect of carbonization conditions on gas permeation of methyl imide based carbon molecular sieve hollow fiber membranes", Membr. J., 23, 335 (2013).
  16. J. M. Lee, M. G. Lee, S. J. Kim, H. C. Koh, and S. Y. Nam, "Characterization of gas permeation properties polyimide copolymer membaranes", Membr. J., 25, 225 (2015).
  17. H. J. Lee, M. W. Lee, H. K. Lee, H. S. Choi, and S. H. Lee, "Recovery of $SF_6$ gas from gaseous mixture ($SF_6/N_2/O_2/CF_4$) through polymeric membranes", Membr. J., 21, 23 (2011).
  18. H. J. Lee, M. W. Lee, H. K. Lee, and S. H. Lee, "Permeation and permselectivity variation of $O_2$, $CF_4$ and $SF_6$ through polymeric hollow fiber membranes", Membr. J., 20, 250 (2010).
  19. D. H. Kim, Y. M. An, H. D. Jo, J. S. Park, and H. K. Lee, "Studies on the $N_2/SF_6$ permeation behaviors using the polyethersulfone hollow fiber membranes", Membr. J., 19, 244 (2009).
  20. Y. Kusuki, H. Shimazaki, N. Tanihara, S. Nakanishi, and T. Yoshinaga, "Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane", J. Membr. Sci., 134, 245 (1997). https://doi.org/10.1016/S0376-7388(97)00118-X
  21. A. B. Fuertes, "Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes", Carbon, 39, 697 (2001). https://doi.org/10.1016/S0008-6223(00)00168-8
  22. E. M. Maya, A. Tena, J. de Abajo, J. G. de la Campa, and A. E. Lozano, "Partially pyrolyzed membranes (PPMs) derived from copolyimides having carboxylic acid groups. Preparation and gas transport properties", J. Membr. Sci., 349, 386 (2010).
  23. S. J. Jeong, J. H. Lim, H. C. Koh, and S. Y. Ha, "Study on the multi-stage hollow fiber membrane modules for $SF_6$ gas separation", Membr. J., 26, 162 (2016).