• 제목/요약/키워드: poly-Si

검색결과 1,078건 처리시간 0.026초

마그네트론 RIE을 이용한 M/NEMS용 다결정 3C-SiC 식각 연구 (A study on polycrystalline 3C-SiC etching with magnetron applied reactive ion etching for M/NEMS applications)

  • 정귀상;온창민;남창우
    • 센서학회지
    • /
    • 제16권3호
    • /
    • pp.197-201
    • /
    • 2007
  • The magnetron reactive ion etching (RIE) characteristics of polycrystalline (poly) 3C-SiC grown on $SiO_{2}$/Si substrate by APCVD were investigated. Poly 3C-SiC was etched by $CHF_{3}$ gas, which can form a polymer as a function of side wall protective layers, with additive $O_{2}$ and Ar gases. Especially, it was performed in magnetron RIE, which can etch SiC at a lower ion energy than a commercial RIE system. Stable etching was achieved at 70 W and the poly 3C-SiC was undamaged. The etch rate could be controlled from $20\;{\AA}/min$ to $400\;{\AA}/min$ by the manipulation of gas flow rates, chamber pressure, RF power, and electrode gap. The best vertical structure was improved by the addition of 40 % $O_{2}$ and 16 % Ar with the $CHF_{3}$ reactive gas. Therefore, poly 3C-SiC etched by magnetron RIE can expect to be applied to M/NEMS applications.

Mobility Determination of Thin Film a-Si:H and poly-Si

  • 정세민;최유신;이준신
    • 센서학회지
    • /
    • 제6권6호
    • /
    • pp.483-490
    • /
    • 1997
  • Thin film Si has been used in sensors, radiation detectors, and solar cells. The carrier mobility of thin film Si influences the device behavior through its frequency response or time response. Since poly-Si shows the higher mobility value, a-Si:H films on Mo substrate were subjected to various crystallization treatments. Consequently, we need to find an appropriate method in mobility measurement before and after the anneal treatment. This paper investigates the carrier mobility improvement with anneal treatments and summarizes the mobility measurement methods of the a-Si:H and poly-Si film. Various techniques were investigated for the mobility determination such as Hall mobility, HS, TOF, SCLC, TFT, and TCO method. We learned that TFT and TCO method are suitable for the mobility determination of a-Si:H and poly-Si film. The measured mobility was improved by $2{\sim}3$ orders after high temperature anneal above $700^{\circ}C$ and grain boundary passivation using an RF plasma rehydrogenation.

  • PDF

Anneal Temperature Effects on Hydrogenated Thin Film Silicon for TFT Applications

  • Ahn, Byeong-Jae;Kim, Do-Young;Yoo, Jin-Su;Junsin Yi
    • Transactions on Electrical and Electronic Materials
    • /
    • 제1권2호
    • /
    • pp.7-11
    • /
    • 2000
  • a-Si:H and poly-Si TFT(thin film transistor) characteristics were investigated using an inverted staggered type TFT. The TFT an as-grown a-Si:H exhibited a low field effect mobility, transconductance, and high gate threshold voltage. The poly-Si films were achieved by using an isothermal and RTA treatment for glow discharge deposited a-Si:H films. The a-Si:H films were cystallized at the various temperature from 600$^{\circ}C$ to 1000$^{\circ}C$. As anneal temperature was elevated, the TFT exhibited increased g$\sub$m/ and reduced V$\sub$ds/. V$\sub$T/. The poly-Si grain boundary passivation with grain boundary trap types and activation energies as a function of anneal temperature. The poly-si TFT showed an improved I$\sub$nm//I$\sub$off/ ratio of 10$\^$6/, reduced gate threshold voltage, and increased field effect mobility by three orders.

  • PDF

고상 결정화로 제작한 다결성 실리콘 박막 트랜지스터에서의 열화특성 분석 (The Analysis of Degradation Characteristics in Poly-Silicon Thin film Transistor Formed by Solid Phase Crystallization)

  • 정은식;이용재
    • 한국전기전자재료학회논문지
    • /
    • 제16권1호
    • /
    • pp.26-32
    • /
    • 2003
  • Then-channel poly-Si thin-film transistors (poly-Si TFT's) formed by solid phase crystallization (SPC) method on glass were measured to obtain the electrical parameters such as of I-V characteristics, mobility, leakage current, threshold voltage, and subthreshold slope. Then, devices were analyzed to obtain the reliability and appliability on TFT-LCD with large-size and high density. In n-channel poly-Si TFT with 5$\mu\textrm{m}$/2$\mu\textrm{m}$, 8$\mu\textrm{m}$, 30$\mu\textrm{m}$ devices of channel width/length, the field effect mobilities are 111, 116, 125 $\textrm{cm}^2$/V-s and leakage currents are 0.6, 0.1, and 0.02 pA/$\mu\textrm{m}$, respectively. Low threshold voltage and subthreshold slope, and good ON-OFF ratio are shown, as well. Thus. the poly-Si TFT's used by SPC are expected to be applied on TFT-LCD with large-size and high density, which can integrate the display panel and peripheral circuit on a targe glass substrate.

Hafnium Oxide Nano-Film Deposited on Poly-Si by Atomic Layer Deposition

  • Wei, Hung-Wen;Ting, Hung-Che;Chang, Chung-Shu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.496-498
    • /
    • 2005
  • We reported that high dielectric hafnium oxide nano-film deposited by thermal atomic layer deposition on the poly-silicon film (poly-Si). The poly -Si film was produced by plasma enhanced chemical vapor deposition and excimer laser annealing. We used the hafniu m chloride ($HfCl_4$) and water as the precursors and analyzed the hafnium oxide film by transmission electron microscope and secondary ion mass spectrometer. Hafnium oxide produced by the ALD method showed very good coverage on the rough surface of poly-Si film. While deposited with 200 cycles, these hafnium oxide films revealed a relatively smooth surface and good uniformity, but the cumulative roughness produced by the incomplete reaction was apparent when the amount of deposition cycle increased to 600 cycles.

  • PDF

박막트랜지스터 응용을 위한 고온 결정화된 다결정실리콘의 특성평가 (The Characteristics of High Temperature Crystallized Poly-Si for Thin Film Transistor Application)

  • 김도영;심명석;서창기;이준신
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권5호
    • /
    • pp.237-241
    • /
    • 2004
  • Amorphous silicon (a-Si) films are used in a broad range of solar cell, flat panel display, and sensor. Because of the greater ease of deposition and lower processing temperature, thin films are widely used for thin film transistors (TFTs). However, they have lower stability under the exposure of visible light and because of their low field effect mobility ($\mu$$_{FE}$ ) , less than 1 c $m^2$/Vs, they require a driving IC in the external circuits. On the other hand, polycrystalline silicon (poly-Si) thin films have superiority in $\mu$$_{FE}$ and optical stability in comparison to a-Si film. Many researches have been done to obtain high performance poly-Si because conventional methods such as excimer laser annealing, solid phase crystallization and metal induced crystallization have several difficulties to crystallize. In this paper, a new crystallization process using a molybdenum substrate has been proposed. As we use a flexible substrate, high temperature treatment and roll-to-roll process are possible. We have used a high temperature process above 75$0^{\circ}C$ to obtain poly-Si films on molybdenum substrates by a rapid thermal annealing (RTA) of the amorphous silicon (a-Si) layers. The properties of high temperature crystallized poly-Si studied, and poly-Si has been used for the fabrication of TFT. By this method, we are able to achieve high crystal volume fraction as well as high field effect mobility.

Buried Channel 4단자 Poly-Si TFTs 제작 (The Fabrication of Four-Terminal Poly-Si TFTs with Buried Channel)

  • 정상훈;박철민;유준석;최형배;한민구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권12호
    • /
    • pp.761-767
    • /
    • 1999
  • Poly-Si TFTs(polycrystalline silicon thin film transistors) fabricated on a low cost glass substrate have attracted a considerable amount of attention for pixel elements and peripheral driving circuits in AMLCS(active matrix liquid crystal display). In order to apply poly-Si TFTs for high resolution AMLCD, a high operating frequency and reliable circuit performances are desired. A new poly-Si TFT with CLBT(counter doped lateral body terminal) is proposed and fabricated to suppress kink effects and to improve the device stability. And this proposed device with BC(buried channel) is fabricated to increase ON-current and operating frequency. Although the troublesome LDD structure is not used in the proposed device, a low OFF-current is successfully obtained by removing the minority carrier through the CLBT. We have measured the dynamic properties of the poly-Si TFT device and its circuit. The reliability of the TFTs and their circuits after AC stress are also discussed in our paper. Our experimental results show that the BC enables the device to have high mobility and switching frequency (33MHz at $V_{DD}$ = 15 V). The minority carrier elimination of the CLBT suppresses kink effects and makes for superb dynamic reliability of the CMOS circuit. We have analyzed the mechanism in order to see why the ring oscillators do not operate by analyzing AC stressed device characteristics.

  • PDF

AlN 버퍼층위에 성장된 다결정 3C-SiC 박막의 라만 특성 (Raman characteristics of polycrysta1line 3C-SiC thin films grown on AlN buffer layer)

  • 이윤명;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.93-93
    • /
    • 2008
  • This paper presents the Raman scattering characteristics of poly (polycrystalline) 3C-SiC thin films deposited on AlN buffer layer by atmospheric pressure chemical vapor deposition (APCVD) using hexamethyldisilane (MHDS) and carrier gases (Ar + $H_2$).The Raman spectra of SiC films deposited on AlN layer of before and after annealings were investigated according to the growth temperature of 3C-SiC. Two strong Raman peaks, which mean that poly 3C-SiC admixed with nanoparticle graphite, were measured in them. The biaxial stress of poly 3C-SiC/AlN was calculated as 896 MPa from the Raman shifts of 3C-SiC deposited at $1180^{\circ}C$ on AlN of after annealing.

  • PDF

The Fabrication by using Surface MEMS of 3C-SiC Micro-heaters and RTD Sensors and their Resultant Properties

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권4호
    • /
    • pp.131-134
    • /
    • 2009
  • The electrical properties and the microstructure of nitrogen-doped poly 3C-SiC films used for micro thermal sensors were studied according to different thicknesses. Poly 3C-SiC films were deposited by LPCVD (low pressure chemical vapor deposition) at $900^{\circ}C$ with a pressure of 4 torr using $SiH_2Cl_2$ (100%, 35 sccm) and $C_2H_2$ (5% in $H_2$, 180 sccm) as the Si and C precursors, and $NH_3$ (5% in $H_2$, 64 sccm) as the dopant source gas. The resistivity of the poly SiC films with a 1,530 ${\AA}$ thickness was 32.7 ${\Omega}-cm$ and decreased to 0.0129 ${\Omega}-cm$ at 16,963 ${\AA}$. The measurement of the resistance variations at different thicknesses were carried out within the $25^{\circ}C$ to $350^{\circ}C$ temperature range. While the size of the resistance variation decreased when the films thickness increased, the linearity of the resistance variation improved. Micro heaters and RTD sensors were fabricated on a $Si_3N_4$ membrane by using poly 3C-SiC with a 1um thickness using a surface MEMS process. The heating temperature of the SiC micro heater, fabricated on 250 ${\mu}m$${\times}$250 ${\mu}m$ $Si_3N_4$ membrane was $410^{\circ}C$ at an 80 mW input power. These 3C-SiC heaters and RTD sensors, fabricated by surface MEMS, have a low power consumption and deliver a good long term stability for the various thermal sensors requiring thermal stability.