Browse > Article
http://dx.doi.org/10.4313/TEEM.2009.10.4.131

The Fabrication by using Surface MEMS of 3C-SiC Micro-heaters and RTD Sensors and their Resultant Properties  

Noh, Sang-Soo (Research Institute, Daeyang Electric Co., Ltd.)
Seo, Jeong-Hwan (Research Institute, Daeyang Electric Co., Ltd.)
Lee, Eung-Ahn (Research Institute, Daeyang Electric Co., Ltd.)
Publication Information
Transactions on Electrical and Electronic Materials / v.10, no.4, 2009 , pp. 131-134 More about this Journal
Abstract
The electrical properties and the microstructure of nitrogen-doped poly 3C-SiC films used for micro thermal sensors were studied according to different thicknesses. Poly 3C-SiC films were deposited by LPCVD (low pressure chemical vapor deposition) at $900^{\circ}C$ with a pressure of 4 torr using $SiH_2Cl_2$ (100%, 35 sccm) and $C_2H_2$ (5% in $H_2$, 180 sccm) as the Si and C precursors, and $NH_3$ (5% in $H_2$, 64 sccm) as the dopant source gas. The resistivity of the poly SiC films with a 1,530 ${\AA}$ thickness was 32.7 ${\Omega}-cm$ and decreased to 0.0129 ${\Omega}-cm$ at 16,963 ${\AA}$. The measurement of the resistance variations at different thicknesses were carried out within the $25^{\circ}C$ to $350^{\circ}C$ temperature range. While the size of the resistance variation decreased when the films thickness increased, the linearity of the resistance variation improved. Micro heaters and RTD sensors were fabricated on a $Si_3N_4$ membrane by using poly 3C-SiC with a 1um thickness using a surface MEMS process. The heating temperature of the SiC micro heater, fabricated on 250 ${\mu}m$${\times}$250 ${\mu}m$ $Si_3N_4$ membrane was $410^{\circ}C$ at an 80 mW input power. These 3C-SiC heaters and RTD sensors, fabricated by surface MEMS, have a low power consumption and deliver a good long term stability for the various thermal sensors requiring thermal stability.
Keywords
Nitrogen-doped; Poly SiC; LPCVD; Membrane; Micro heater;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Ziermann, J. V. Berg, E. Obermeier, F. Niemann, H. Moller, M. Eickhoff, and G. Krotz, Conf. Pro. ECSCRM'98, Montpellier, France, p.229,(1998).
2 D. Mutschall, C. Scheibe, and E. Obermeier, Trans. Eurosensors IX,57-PA6, 256 (1995).
3 P. M. Sarro, Sens. Actuators A 31, 138 (1992).   DOI   ScienceOn
4 M. A. Gajda and H. Ahmed, Sens. Actuator A 49, 1 (1995).   DOI   ScienceOn
5 L. Qiu, E. Obermeier, and A. Schubert, Trans. Eurosensors IX, 130-C2, 520 (1995).
6 S. H. Lee, I. C. Sub, and Y. K. Sung, J. Korean Sens. Soc., 5, 69 (1996).
7 M. Mehregany, C. A. Zorman, N. Rajan, and C. H. Wu, Proceeding of the IEEE, 86, 1594 (1998).   DOI   ScienceOn
8 X. A. Fu, J. L. Dunning, C. A. Zorman, and M. Mehregany, Sens. Actuator A, 199, 169 (2005).   DOI   ScienceOn
9 V. V. Luchinin, Tech. Dig. of the 7th Sensor Symp. p. 30, (1996).
10 U. Dibbern, Sens. Actuator B. 2, 63 (1990).   DOI   ScienceOn
11 W. Y. Chung, C. H. Shim, S. D. Choi, and D. D. Lee, Sens. Actuator B, 20,139(1994).   DOI   ScienceOn
12 S. Noh, X. Fu, L. Chen, and M. Mehregany, Sens. Actuator A, 136, 613 (2007).   DOI   ScienceOn
13 S. Noh, J. Seo, and E. Lee, Trans. Electr. Electron. Mater. 9, 101 (2008).   DOI   ScienceOn
14 T. Kamins, Polycrystalline Silicon for Integrated Circuit Applications, (Kluwer Academic Publishers, Boston 1988), p. 155