• Title/Summary/Keyword: poly(vinylidene fluoride) membrane

Search Result 54, Processing Time 0.021 seconds

Preparation and Characterization of Graft Copolymer/$TiO_2$ Nanocomposite Polymer Electrolyte Membranes (가지형 공중합체/$TiO_2$ 나노복합 고분자 전해질막의 제조 및 분석)

  • Koh, Jong-Kwan;Roh, Dong-Kyu;Patel, Rajkumar;Shul, Yong-Gun;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • A graft copolymer, i.e. poly(vinylidene fluoride-co-chlorotrifluoroethylene )-g-poly(styrene sulfonic acid) (P(VDF-co-CTFE)-g-PSSA) with 47 wt% of PSSA was synthesized via atom transfer radical polymerization (ATRP). This copolymer was combined with titanium isopropoxide (TTIP) to produce graft copolymer/$TiO_2$ nanocomposite membranes via sol-gel process. $TiO_2$ precursor (TTIP) was selectively incorporated into the hydrophilic PSSA domains of the graft copolymer and grown to form $TiO_2$ nanoparticles, as confirmed by FT-IR and UV-visible spectroscopy. Water uptake and ion exchange capacity (IEC) decreased with TTIP contents due to the decrease in number of sulfonic acid in the membranes. At 5 wt% of TTIP, the mechanical properties of membranes increased while maintaining the proton conductivity.

Study on the Hollow Fiber Nano-composite Membrane Preparation onto the Porous PVDF Membrane Surfaces using the Interfacial Polymerization (다공성 PVDF 막의 polyamide 계면중합법처리를 통한 나노 중공사 복합막 제조 연구)

  • Kang, Su Yeon;Cho, Eun Hye;Kim, Ihl hyung;Kim, Cheong Sik;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.107-112
    • /
    • 2014
  • The composite membranes were prepared on the surface of hydrophobic porous poly (vinylidene fluoride) (PVDF) hollow fiber membranes through the interfacial polymerization. The preparation variables were the concentrations of piperazine (PIP), trimesoyl chloride (TMC) and the contents of polyethylene glyco l (PEG). The separation characterization of the resulting membranes were carried out for aqueous 100 ppm solution of NaCl, $CaSO_4$, and $MgCl_2$ and also mixed 300 ppm solution of NaCl and $CaSO_4$ in terms of the flux and rejection. Both the flux and rejection were the highest when the interfacial polymerization was conducted using TMC. When TMC concentration was 0.1 wt%, the flux and rejection were shown 48.3 LMH ($L/m^2{\cdot}hr$) and 59%, respectively. To improve the flux, the annealing post-treatment and the addition of PEG into piperazine were done. As expected, the overall flux was enhanced while the rejection was reduced.

Study of surface modification and contact angle by electrospun PVdF-HFP membrane with DLC coating (DLC 코팅에 의한 PVdF-HFP 막의 표면변화 및 접촉각 연구)

  • Lee, Tae Dong;Cho, Hyun;Yoon, Su Jong;Kim, Tae Gyu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Poly vinylidene fluoride-co-hexafluoropropylene (PVdF-HFP) membrane were prepared by the electrospinning technique. We had applied a DLC coating process and then the surface of the membrane and the contact angle change was investigated. Electrospun fibrous PVdF-HFP membrane surface became to wrinkled shape by Ar plasma treatment and treatment conditions. The wrinkled surface of PVdF-HFP membrane became super-hydrophilic. However, after DLC coating process, it became super-hydrophobic. The resulting surfaces were characterized by water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM). Resultantly it was recognized that the wettability characteristics of the membrane surfaces depended on the chemical composition and surface morphology.

Water desalination by membrane distillation using PVDF-HFP hollow fiber membranes

  • Garcia-Payo, M.C.;Essalhi, M.;Khayet, M.;Garcia-Fernandez, L.;Charfi, K.;Arafat, H.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.215-230
    • /
    • 2010
  • Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, hollow fiber membranes were prepared by the dry/wet spinning technique using different polyethylene glycol (PEG) concentrations as non-solvent additive in the dope solution. Two different PEG concentrations (3 and 5 wt.%). The morphology and structural characteristics of the hollow fiber membranes were studied by means of optical microscopy, scanning electron microscopy, atomic force microscopy (AFM) and void volume fraction. The experimental permeate flux and the salt (NaCl) rejection factor were determined using direct contact membrane distillation (DCMD) process. An increase of the PEG content in the spinning solution resulted in a faster coagulation of the PVDF-HFP copolymer and a transition of the cross-section internal layer structure from a sponge-type structure to a finger-type structure. Pore size, nodule size and roughness parameters of both the internal and external hollow fiber surfaces were determined by AFM. It was observed that both the pore size and roughness of the internal surface of the hollow fibers enhanced with increasing the PEG concentration, whereas no change was observed at the outer surface. The void volume fraction increased with the increase of the PEG content in the spinning solution resulting in a higher DCMD flux and a smaller salt rejection factor.

Preparation of Pore-filled Anion-exchange Membrane with PVDF and Poly(vinylbenzylchloride)

  • Park, Byungkyu;Byungpyo Hong;Kwangsoo Yu;Hongsik Byun
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.207-210
    • /
    • 2004
  • The pore-filled anion-exchange membranes were prepared in this study with an asymmetric poly(vinylidene fluoride)(PVDF) membrane as a nascent membrane and poly(vinylbenzyl chloride)(PVBCl) as a polyelectrolyte. The solution of PVBCI having the chloromethylate aryl ring of 80 percents and 1,4-diaminobicyclo [2,2,2]octane(DABCO) was made with the solvent of tetrahydrofuran(THF) and N,N-Dimethylformamide(DMF), which is in the rotio of 8:2. A new preparation method in this study, i.e. in-situ crosslinking, enabled us to produce the pore-filled membranes without change of size, and to control the properties of final membrane with various degree of cross-linking. From the result of surface morphologies of SEM and AFM the polyelectrolyte exists in the pores of nascent membrane as a certain configuration. From the investigation of the solvent affecting much to the permeability and rejection, it was found. that the membranes using DMF and THF showed better performances than the membranes produced by THF only. The water permeability of the final membrane at low pressure(100㎪) showed a typical ultrafiltation membrane's permeability (8-10kg/㎡hr) and good values of rejection(55∼60 percent).

Membrane distillation of power plant cooling tower blowdown water

  • Ince, Elif;Uslu, Yasin Abdullah
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.321-330
    • /
    • 2019
  • The objective of this study was to examine the recovery of the power plant cooling tower blowdown water (CTBD) by membrane distillation. The experiments were carried out using a flat plate poly vinylidene fluoride (PVDF) membrane with a pore diameter of $0.22{\mu}m$ by a direct contact membrane distillation unit (DCMD). The effects of operating parameters such as transmembrane temperature difference (${\Delta}T$), circulation rate and operating time on permeate flux and membrane fouling have been investigated. The results indicated that permeate flux increased with increasing ${\Delta}T$ and circulation rate. Whereas maximum permeate flux was determined as $47.4L/m^2{\cdot}h$ at ${\Delta}T$ of $50^{\circ}C$ for all short term experiments, minimum permeate flux was determined as $7.7L/m^2{\cdot}h$ at ${\Delta}T$ of $20^{\circ}C$. While $40^{\circ}C$ was determined as the optimum ${\Delta}T$ in long term experiments. Inorganic and non-volatile substances caused fouling in the membranes.

Effect of PTMGDA-PEGMA dopant on PVDF ultrafiltration membrane

  • Chen, Gui-E.;Huang, Hui-Hong;Xu, Zhen-Liang;Zhang, Ping-Yun;Wu, Wen-Zhi;Sun, Li;Liu, Yan-Jun
    • Membrane and Water Treatment
    • /
    • v.7 no.6
    • /
    • pp.539-553
    • /
    • 2016
  • As a novel hydrophobic monomer, polytetrahydrofuran diacrylate (PTMGDA) was synthesized by the esterification reaction between polyethylene tetrahydrofuran (PTMG) and acryloyl chloride (AC). In situ free radical polymerization reaction method was utilized to fabricate poly (vinylidene fluoride) (PVDF)-PTMGDA-poly(ethylene oxide) dimethacrylate (PEGMA) ulrafiltration (UF) membranes. The performances of PVDF-PTMGDA-PEGMA UF membranes in terms of morphologies, mechanical properties, separation properties and hydrophilicities were investigated. The introduction of the PTMGDA-PEGMA dopants not only increased the membranes' pure water flux, but also improved their mechanical properties and the dynamic contact angles. The addition of the PTMGDA/PEGMA dopants led to the formation of the finger-like structure in the membrane bulk. With the increase concentration of PTMGDA/PEGMA dopants, the porosity and the mean effective pore size increased. Those performances were coincide with the physicochemical properties of the casting solutions.

Preparation and Anti-fouling Properties of PVDF Mixed Matrix Asymmetric Membranes Impregnated with 𝛽-cyclodextrin (𝛽-사이클로덱스트린을 함침시킨 PVDF 혼합기질 비대칭막의 제조와 내오염성 평가)

  • Shin, Sung Ju;Lee, Jong Sung;Lee, Jeong Gil;Youm, Kyung Ho
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.434-442
    • /
    • 2021
  • Poly(vinylidene fluoride) (PVDF) membrane has a good membrane durability because of its high mechanical resistance, thermal and chemical stability. However, the strong hydrophobic property of PVDF membrane can induce a low water permeability and easy fouling by proteins and organic matters. In order to improve the anti-fouling properties of PVDF membrane, the PVDF mixed matrix asymmetric membranes impregnated with biofunctional material 𝛽-cyclodextrin (𝛽-CD) in the membrane structure were prepared by phase inversion method. The membrane filtration experiments of pure water and BSA solution were performed using the PVDF/𝛽-CD mixed matrix asymmetric membranes prepared according to the 𝛽-CD contents. The experiments showed that the introduction of 𝛽-CD into the PVDF polymer matrix contributed to increase in the hydrophilic property of the PVDF membranes, and this led to the reduction of contact angles and improvement of anti-fouling properties. The PVDF/𝛽-CD membrane which was prepared using the dope solution with a 2 wt% 𝛽-CD content represented 64 L/m2·h of pure water flux, 95% of BSA rejection and maximum 80% of flux enhancements compared to flux results of the pristine PVDF membrane.

Preparation of PVdF Composite Nanofiber Membrane by Using Manganese-Iron Oxide and Characterization of its Arsenic Removal (망간-철 산화물을 이용한 PVdF 나노섬유복합막의 제조 및 비소 제거 특성 평가)

  • Yun, Jaehan;Jang, Wongi;Park, Yeji;Lee, Junghun;Byun, Hongsik
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.116-125
    • /
    • 2016
  • This study described a synthesis of MF having a arsenic removal characteristics and the fundamental research was performed about the simultaneous removal system of both As(III) and As(V) ions with the composite nanofiber membrane (PMF) based on PVdF and MF materials for the water-treatment application. From the TEM analysis, the shape and structure of MF materials was investigated. The mechanical strength, pore-size, contact angle and water-flux analysis for the PMF was performed to investigate the possibility of utilizing as a water treatment membrane. From these results, the PMF11 showed the highest value of mechanical strength ($232.7kgf/cm^2$) and the pore-diameter of composite membrane was reduced by introducing the MF materials. In particular, their pore diameter decreased with an increase of iron oxide composition ratio. The water flux value of PMF was improved about 10 to 60% compared with that of neat PVdF nanofiber membranes. From the arsenic removal characterization of prepared MF materials and PMF, it was shown the simultaneous removal characteristics of both As(III) and (V) ions, and the MF01, in particular, showed the highest adsorption-removal rate of 93% As(III) and 68% As(V), respectively. From these results, prepared MF materials and PMF have shown a great potential to be utilized for the fundamental study to improve the functionality of water treatment membrane.

Studies on the Preparation of Nanofiltration Membrane for Ultra-low Pressure Application through Hydrophilization of Porous PVDF Membrane Using Inorganic Salts (무기염을 이용한 다공성 PVDF 고분자막의 친수화를 통한 초저압용 나노여과막 제조 연구)

  • Park, Chan Jong;Cho, Eun Hye;Rhim, Ji Won;Cheong, Seong Ihl
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • To prepare the hollow fiber nanofiltration composite membranes, the poly(vinylidene fluoride) (PVDF) membrane was hydrophilized with $K_2Cr_2OH$ and $KMnO_4$ aqueous solutions. And then the composite membrane was synthesized on that membrane surfaces using interfacial polymerization with piperazine (PIP) and trimesoyl chloride (TMC). The resulting membranes were characterized in terms of the rejection and flux for NaCl, $CaSO_4$, $MgCl_2$ 100 ppm solution and 300 ppm of NaCl and $CaSO_4$ mixed solution by varying the coating time, drying time, and the concentration of the coating materials. As a result, the higher rejections were shown for $K_2Cr_2OH$ solutionas a hydrophilization material, and the flux was enhanced while the rejection reduced as the hydrophilization time is longer. Also, the rejection increased and the flux reduced as the concentrations of triethyl amine (TEA) and sodium lauryl sulfate (SLS) were higher. Typically, the rejection 50% and flux 40 LMH for NaCl 100 ppm solution, and the rejection 55% and flux 48 LMH for $CaSO_4$ 100 ppm solution were obtained for the PVDF hollow fiber composite membrane prepared with the conditions of PIP 2 wt% (Triethyl amine (TEA) 7 wt%, SLS 20 wt% mixed solution against PIP concentration) and TMC 0.1 wt%.