DOI QR코드

DOI QR Code

Water desalination by membrane distillation using PVDF-HFP hollow fiber membranes

  • Garcia-Payo, M.C. (Department of Applied Physics I, Faculty of Physics, University Complutense of Madrid) ;
  • Essalhi, M. (Department of Applied Physics I, Faculty of Physics, University Complutense of Madrid) ;
  • Khayet, M. (Department of Applied Physics I, Faculty of Physics, University Complutense of Madrid) ;
  • Garcia-Fernandez, L. (Department of Applied Physics I, Faculty of Physics, University Complutense of Madrid) ;
  • Charfi, K. (Department of Applied Physics I, Faculty of Physics, University Complutense of Madrid) ;
  • Arafat, H. (Department of Chemical Engineering, Faculty of Engineering, An-Najah National University)
  • Received : 2009.07.10
  • Accepted : 2010.06.14
  • Published : 2010.07.25

Abstract

Poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, hollow fiber membranes were prepared by the dry/wet spinning technique using different polyethylene glycol (PEG) concentrations as non-solvent additive in the dope solution. Two different PEG concentrations (3 and 5 wt.%). The morphology and structural characteristics of the hollow fiber membranes were studied by means of optical microscopy, scanning electron microscopy, atomic force microscopy (AFM) and void volume fraction. The experimental permeate flux and the salt (NaCl) rejection factor were determined using direct contact membrane distillation (DCMD) process. An increase of the PEG content in the spinning solution resulted in a faster coagulation of the PVDF-HFP copolymer and a transition of the cross-section internal layer structure from a sponge-type structure to a finger-type structure. Pore size, nodule size and roughness parameters of both the internal and external hollow fiber surfaces were determined by AFM. It was observed that both the pore size and roughness of the internal surface of the hollow fibers enhanced with increasing the PEG concentration, whereas no change was observed at the outer surface. The void volume fraction increased with the increase of the PEG content in the spinning solution resulting in a higher DCMD flux and a smaller salt rejection factor.

Keywords

References

  1. Al-Obaidani, S., Curcio, E., Macedonio, F., Di Profio, G., Al-Hinai, H. and Drioli, E. (2008), "Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation", J. Membrane Sci., 323, 85-98. https://doi.org/10.1016/j.memsci.2008.06.006
  2. Bonyadi, S. and Chung, T.S. (2009), "Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach", J. Membrane Sci., 331, 66-74. https://doi.org/10.1016/j.memsci.2009.01.014
  3. Cao, J.H., Zhu, B.K. and Xu, Y.Y. (2006), "Structure and ionic conductivity of porous polymer electrolytes based on PVDF-HFP copolymer membranes", J. Membrane Sci., 281, 446-453. https://doi.org/10.1016/j.memsci.2006.04.013
  4. Chung, T.S.N. (2008), "Fabrication of hollow-fiber membrane by phase inversion", Advanced Membrane Technology and Applications, (Eds. Li, N.N., Fane, A.G., Ho, W.S.W. and Matsuura, T.), John Wiley & Sons, New Jersey.
  5. El-Bourawi, M.S., Ding, Z., Ma, R. and Khayet, M. (2006), "A framework for better understanding membrane distillation separation process", J. Membrane Sci., 285, 4-29. https://doi.org/10.1016/j.memsci.2006.08.002
  6. Feng, C., Wang, R., Shi, B., Li, G. and Wu, Y. (2006), "Factors affecting pore structure and performance of poly(vinylidene fluoride-co-hexafluoropropylene) asymmetric porous membrane", J. Membrane Sci., 277, 55- 64. https://doi.org/10.1016/j.memsci.2005.10.009
  7. Garcia-Payo, M.C., Izquierdo-Gil, M.A. and Fernandez-Pineda, C. (2000), "Air gap membrane distillation of aqueous alcohol solutions", J. Membrane Sci., 169, 61-80. https://doi.org/10.1016/S0376-7388(99)00326-9
  8. Garcia-Payo, M.C., Izquierdo-Gil, M.A. and Fernández-Pineda, C. (2002), "Wetting study of hydrophobic membranes via liquid entry pressure measurements with aqueous alcohol solutions", J. Colloid Interf. Sci., 230, 420-431.
  9. García-Payo, M.C., Rivier, C.A., Marison, I.W. and von Stockar, U. (2002), "Separation of binary mixtures by thermostatic sweeping gas membrane distillation: II. Experimental results with aqueous formic acid solutions", J. Membrane Sci., 198, 197-210. https://doi.org/10.1016/S0376-7388(01)00649-4
  10. Garcia-Payo, M.C., Essalhi, M. and Khayet, M. (2009), "Preparation and characterization of PVDF-HFP copolymer hollow fiber membranes for membrane distillation", Desalination, 246, 96-100.
  11. Garcia-Payo, M.C., Essalhi, M. and Khayet, M. (2010), "Effects of PVDF-HFP concentration on membranes distillation performance and structural morphology of hollow fiber membranes", J. Membrane Sci., 347, 209- 219. https://doi.org/10.1016/j.memsci.2009.10.026
  12. Gryta, M., Tomaszewska, M. and Karakulski, K. (2006), "Wastewater treatment by membrane distillation", Desalination, 198, 67-73. https://doi.org/10.1016/j.desal.2006.09.010
  13. Hou, D., Wang, J., Qu, D., Luan, Z. and Ren, X. (2009), "Fabrication and characterization of hydrophobic PVDF hollow fiber membranes for desalination through direct contact membrane distillation", Sep. Purif. Technol., 69, 78-86. https://doi.org/10.1016/j.seppur.2009.06.026
  14. Hwang, Y.J., Jeong, S.K., Nahm, K.S. and Stephan A.M. (2007). "Electrochemical studies on poly(vinylidene fluoride-co-hexafluropropylene) membranes prepared by phase inversion method", Eur. Polym. J. 43, 65-71. https://doi.org/10.1016/j.eurpolymj.2006.10.020
  15. Izquierdo-Gil, M.A., García-Payo, M.C. and Fernández-Pineda, C. (1999), "Direct contact membrane distillation of sugar aqueous solutions", Sep. Sci. Technol., 34, 1773-1801. https://doi.org/10.1081/SS-100100738
  16. Khayet, M. (2003), "The effects of air gap length on the internal and external morphology of hollow fiber membranes", Chem. Eng. Sci., 58, 3091-3104. https://doi.org/10.1016/S0009-2509(03)00186-6
  17. Khayet, M. (2008), "Membrane distillation", Advanced Membrane Technology and Applications, (Eds. Li, N.N., Fane, A.G., Ho, W.S.W. and Matsuura T.), John Wiley & Sons, New Jersey.
  18. Khayet, M. and Matsuura, T. (2001), "Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation", Ind. Eng. Chem. Res., 40, 5710-5718. https://doi.org/10.1021/ie010553y
  19. Khayet, M., Feng, C., Khulbe, K.C. and Matsuura, T. (2002), "Preparation and characterization of polyvinylidene fluoride hollow fiber membranes for ultrafiltration", Polymer, 43, 3879-3890. https://doi.org/10.1016/S0032-3861(02)00237-9
  20. Khayet, M., Velazquez, A. and Mengual, J.I. (2004), "Direct contact membrane distillation of humic acid solutions", J. Membrane Sci., 240, 123-128. https://doi.org/10.1016/j.memsci.2004.04.018
  21. Khayet, M., Garcia-Payo, M.C., Qusay, F.A., Khulbe, K.C., Feng, C.Y. and Matsuura, T. (2008), "Effects of gas gap type on structural morphology and performance of hollow fibers", J. Membrane Sci., 311, 259-269. https://doi.org/10.1016/j.memsci.2007.12.041
  22. Khulbe, K.C., Feng, C.Y., Hamad, F., Matsuura, T. and Khayet, M. (2004), "Structural and performance study of micro porous polyetherimide hollow fiber membranes prepared at different air gap", J. Membrane Sci., 245, 191-198. https://doi.org/10.1016/j.memsci.2004.06.061
  23. Li, B. and Sirkar, K.K. (2004), "Novel membrane and device for direct contact membrane distillation based desalination process", Ind. Eng. Chem. Res., 43, 5300-5309. https://doi.org/10.1021/ie030871s
  24. Li, G.C., Zhang, P., Zhang, H.P., Yang, L.C. and Wu, Y.P. (2008), "A porous polymer electrolyte based on P(VDF-HFP) prepared by simple phase separation process", Electrochem. Commum., 10, 1883-1885. https://doi.org/10.1016/j.elecom.2008.09.035
  25. Martinez, L. and Rodriguez-Maroto, J.M. (2008), "Membrane thickness reduction effects on direct contact membrane distillation performance", J. Membrane Sci., 312, 143-156. https://doi.org/10.1016/j.memsci.2007.12.048
  26. Park, H.H., Deshwal, B.R., Kim, I.W. and Lee, H.K. (2008), "Absorption of $SO_{2}$ from flue gas using PVDF hollow fiber membranes in a gas-liquid contactor", J. Membrane Sci., 319, 29-37. https://doi.org/10.1016/j.memsci.2008.03.023
  27. Qtaishat, M., Matsuura, T., Kruczek, B. and Khayet, M. (2008), "Heat and mass transfer analysis in direct contact membrane distillation", Desalination, 219, 272-292. https://doi.org/10.1016/j.desal.2007.05.019
  28. Qtaishat, M., Rana, D., Khayet, M. and Matsuura, T. (2009), "Preparation and characterization of novel hydrophobic/hydrophilic polyetherimide composite membranes for desalination by direct contact membrane distillation", J. Membrane Sci., 327, 264-273. https://doi.org/10.1016/j.memsci.2008.11.040
  29. Seol, W.H., Lee, Y.M. and Park, J.K. (2007), "Enhancement of the mechanical properties of PVDF membranes by non-solvent aided morphology control", J. Power Sources, 170, 191-195. https://doi.org/10.1016/j.jpowsour.2007.03.085
  30. Shi, L., Wang, R., Cao, Y., Feng, C., Liang, D.T. and Tay, J.H. (2007), "Fabrication of poly(vinylidene fluorideco- hexafluoropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes", J. Membrane Sci.,305, 215-225. https://doi.org/10.1016/j.memsci.2007.08.012
  31. Shi, L., Wang, R., Cao, Y., Liang, D.T. and Tay, J.H. (2008), "Effect of additives on the fabrication of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes", J. Membrane Sci., 315, 195-204. https://doi.org/10.1016/j.memsci.2008.02.035
  32. Shi, L., Wang, R., Cao, Y. (2009), "Effect of the rheology of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) dope solutions on the formation of microporous hollow fibers used as membrane contactors", J. Membrane Sci., 344, 112-122. https://doi.org/10.1016/j.memsci.2009.07.041
  33. Song, L., Li, B., Sirkar, K.K. and Gilron, J.L. (2007), "Direct contact membrane distillation-based desalination: novel membranes, devices, larger-scale studies and a model", Ind. Eng. Chem. Res., 46, 2307-2323. https://doi.org/10.1021/ie0609968
  34. Stephan, A.M., Renganathan, N.G., Gopukumar, S. and Teeters, D. (2004), "Cycling behavior of poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-HFP) membranes prepared by phase inversion method", Mater. Chem. Phys., 85, 6-11. https://doi.org/10.1016/j.matchemphys.2003.11.038
  35. Teoh, M.M., Bonyadi, S. and Chung, T.S. (2008), "Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process", J. Membrane Sci., 311, 371-379. https://doi.org/10.1016/j.memsci.2007.12.054
  36. Tian, X. and Jiang, X. (2008), "Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) membranes for ethyl acetate removal from water", J. Hazard. Mater., 153, 128-135. https://doi.org/10.1016/j.jhazmat.2007.08.029
  37. Tomaszewska, M. (1996), "Preparation and properties of flat-sheet membranes from poly(vinylidene) fluoride for membrane distillation", Desalination, 104, 1-11. https://doi.org/10.1016/0011-9164(96)00020-3
  38. Wang, D., Li, K. and Teo, W.K. (1999), "Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes", J. Membrane Sci., 163, 211-220. https://doi.org/10.1016/S0376-7388(99)00181-7
  39. Wang, K.Y., Chung, T.S. and Gryta, M. (2008), "Hydrophobic PVDF hollow fiber membranes with narrow pore size distribution and ultra-thin skin for the freshwater production through membrane distillation", Chem. Eng. Sci,. 63, 2587-2596. https://doi.org/10.1016/j.ces.2008.02.020
  40. Yeow, M.L., Liu, Y.T. and Li, K. (2004), "Morphological studies of poly(vinylidene fluoride) asymmetric membranes: effect of the solvent, additive and dope temperature", J. Appl. Polym. Sci., 92, 1782-1789. https://doi.org/10.1002/app.20141
  41. Zhang, M., Zhang, A.Q., Zhu, B.K., Du, C.H. and Xu, Y.Y. (2008), "Polymorphism in porous poly(vinylidene fluoride) membranes formed via immersion precipitation process", J. Membrane Sci., 319, 169-175. https://doi.org/10.1016/j.memsci.2008.03.029

Cited by

  1. Integrated direct contact membrane distillation for olive mill wastewater treatment vol.323, 2013, https://doi.org/10.1016/j.desal.2012.06.014
  2. Effects of mixed solvents on the structural morphology and membrane distillation performance of PVDF-HFP hollow fiber membranes vol.468, 2014, https://doi.org/10.1016/j.memsci.2014.06.014
  3. Utilization improvement of PDMS and fluoropolymers by mutual application vol.2, pp.1, 2011, https://doi.org/10.12989/mwt.2011.2.1.039
  4. Mechanism of formation of hollow fiber membranes for membrane distillation: 2. Outer coagulation power effect on morphological characteristics vol.542, 2017, https://doi.org/10.1016/j.memsci.2017.03.038
  5. Mechanism of formation of hollow fiber membranes for membrane distillation: 1. Inner coagulation power effect on morphological characteristics vol.542, 2017, https://doi.org/10.1016/j.memsci.2017.03.036
  6. Hollow fiber membranes with different external corrugated surfaces for desalination by membrane distillation vol.416, 2017, https://doi.org/10.1016/j.apsusc.2017.04.232
  7. Emerging membrane technologies developed in NUS for water reuse and desalination applications: membrane distillation and forward osmosis vol.2, pp.1, 2010, https://doi.org/10.12989/mwt.2011.2.1.001
  8. Study on the heat and mass transfer in ultrasonic assisting vacuum membrane distillation vol.8, pp.3, 2010, https://doi.org/10.12989/mwt.2017.8.3.293
  9. Novel MIL101(Fe) impregnated poly(vinylidene fluoride-co-hexafluoropropylene) mixed matrix membranes for dye removal from textile industry wastewater vol.43, pp.None, 2010, https://doi.org/10.1016/j.jwpe.2021.102317
  10. CNT functionalized ZIF-8 impregnated poly(vinylidene fluoride-co-hexafluoropropylene) mixed matrix membranes for antibiotics removal from pharmaceutical industry wastewater by vacuum membrane distilla vol.9, pp.6, 2021, https://doi.org/10.1016/j.jece.2021.106560
  11. Comprehensive insights into performance of water gap and air gap membrane distillation modules using hollow fiber membranes vol.525, pp.None, 2022, https://doi.org/10.1016/j.desal.2021.115497