DOI QR코드

DOI QR Code

Effect of PTMGDA-PEGMA dopant on PVDF ultrafiltration membrane

  • Chen, Gui-E. (School of Chemical and Environmental Engineering, Shanghai Institute of Technology) ;
  • Huang, Hui-Hong (School of Chemical and Environmental Engineering, Shanghai Institute of Technology) ;
  • Xu, Zhen-Liang (State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology) ;
  • Zhang, Ping-Yun (State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology) ;
  • Wu, Wen-Zhi (School of Chemical and Environmental Engineering, Shanghai Institute of Technology) ;
  • Sun, Li (School of Chemical and Environmental Engineering, Shanghai Institute of Technology) ;
  • Liu, Yan-Jun (School of Chemical and Environmental Engineering, Shanghai Institute of Technology)
  • Received : 2015.10.24
  • Accepted : 2016.09.27
  • Published : 2016.11.25

Abstract

As a novel hydrophobic monomer, polytetrahydrofuran diacrylate (PTMGDA) was synthesized by the esterification reaction between polyethylene tetrahydrofuran (PTMG) and acryloyl chloride (AC). In situ free radical polymerization reaction method was utilized to fabricate poly (vinylidene fluoride) (PVDF)-PTMGDA-poly(ethylene oxide) dimethacrylate (PEGMA) ulrafiltration (UF) membranes. The performances of PVDF-PTMGDA-PEGMA UF membranes in terms of morphologies, mechanical properties, separation properties and hydrophilicities were investigated. The introduction of the PTMGDA-PEGMA dopants not only increased the membranes' pure water flux, but also improved their mechanical properties and the dynamic contact angles. The addition of the PTMGDA/PEGMA dopants led to the formation of the finger-like structure in the membrane bulk. With the increase concentration of PTMGDA/PEGMA dopants, the porosity and the mean effective pore size increased. Those performances were coincide with the physicochemical properties of the casting solutions.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, National Development and Reform Commission in China, Shanghai Committee of Science and Technology in China, Jiangsu Committee of Science and Technology in China

References

  1. Awanis Hashim, N., Liu, F., Moghareh Abed, M.R. and Li, K. (2012), "Chemistry in spinning solutions: Surface modification of PVDF membranes during phase inversion", J. Membr. Sci., 415-416, 399-411. https://doi.org/10.1016/j.memsci.2012.05.024
  2. Boributh, S., Chanachai, A. and Jiraratananon, R. (2009), "Modification of PVDF membrane by chitosan solution for reducing protein fouling", J. Membr. Sci., 342(1-2), 97-104. https://doi.org/10.1016/j.memsci.2009.06.022
  3. Chen, G.E., Wu, W.Z., Zhang, P.Y. and Xu, Z.L. (2014), "Influence of residence time on performances of PVDF membranes", J. Appl. Polym. Sci., 131.
  4. Cui, Z., Drioli, E. and Lee, Y.M. (2014), "Recent progress in fluoropolymers for membranes", Prog. Polym. Sci., 39(1), 164-198. https://doi.org/10.1016/j.progpolymsci.2013.07.008
  5. Forsythe, J.S. and Hill, D.J.T. (2000), "The radiation chemistry of fluoropolymers", Prog. Polym. Sci., 25(1), 101-136. https://doi.org/10.1016/S0079-6700(00)00008-3
  6. Hester, J.F., Banerjee, P. and Mayes, A.M. (1999), "Preparation of protein-resistant surfaces on poly (vinylidene fluoride) membranes via surface segregation", Macromolecules, 32(5), 1643-1650. https://doi.org/10.1021/ma980707u
  7. Katsoufidou, K., Yiantsios, S.G. and Karabelas, A.J. (2005), "A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling", J. Membr. Sci., 266(1-2), 40-50. https://doi.org/10.1016/j.memsci.2005.05.009
  8. Khayet, M., Feng, C.Y., Khalbe, K.C. and Matsuura, T. (2002), "Preparation and characterization of polyvinylidene fluoride hollow fiber membrane for ultrafiltration", Polymer., 43, 3879-3890. https://doi.org/10.1016/S0032-3861(02)00237-9
  9. Kim, Y., Rana, D., Matsuura, T. and Chung, W.-J. (2009), "Influence of surface modifying macromolecules on the surface properties of poly(ether sulfone) ultra-filtration membranes", J. Membr. Sci., 338(1-2), 84-91. https://doi.org/10.1016/j.memsci.2009.04.017
  10. Letchford, K. and Burt, H. (2007), "A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes", Eur. J. Pharm. Biopharm., 65(3), 259-269. https://doi.org/10.1016/j.ejpb.2006.11.009
  11. Li, J.H., Li, M.Z., Jing, M., Wang, J.B., Shao, X.S. and Zhang, Q.Q. (2012), "Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive", Appl. Surf. Sci., 258(17), 6398-6405. https://doi.org/10.1016/j.apsusc.2012.03.049
  12. Li, J.-H., Shao, X.S., Zhou, Q., Li, M.Z. and Zhang, Q.Q. (2013), "The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance", Appl. Surf. Sci., 265, 663-670. https://doi.org/10.1016/j.apsusc.2012.11.072
  13. Liu, F., Xu, Y.Y., Zhu, B.K., Zhang, F. and Zhu, L.P. (2009), "Preparation of hydrophilic and fouling resistant poly(vinylidene fluoride) hollow fiber membranes", J. Membr. Sci., 345(1-2), 331-339. https://doi.org/10.1016/j.memsci.2009.09.020
  14. Liu, F., Hashim, N.A., Liu, Y., Moghareh Abed, M.R. and Li, K. (2011), "Progress in the production and modification of PVDF membranes", J. Membr. Sci., 375(1-2), 1-27. https://doi.org/10.1016/j.memsci.2011.03.014
  15. Liu, B., Chen, C., Li, T., Crittenden, J. and Chen, Y. (2013a), "High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-PEGMA", J. Membr. Sci., 445, 66-75. https://doi.org/10.1016/j.memsci.2013.05.043
  16. Liu, M., Wei, Y.M., Xu, Z.L., Guo, R.Q. and Zhao, L.B. (2013b), "Preparation and characterization of polyethersulfone microporous membrane via thermally induced phase separation with low critical solution temperature system", J. Membr. Sci., 437, 169-178. https://doi.org/10.1016/j.memsci.2013.03.004
  17. Loh, C.H., Wang, R., Shi, L. and Fane, A.G. (2011), "Fabrication of high performance polyethersulfone UF hollow fiber membranes using amphiphilic Pluronic block copolymers as pore-forming additives", J. Membr. Sci., 380(1-2), 114-123. https://doi.org/10.1016/j.memsci.2011.06.041
  18. Neugebauer, D. (2007), "Graft copolymers with poly(ethylene oxide) segments", Polym. Int., 56(12), 1469-1498. https://doi.org/10.1002/pi.2342
  19. Prince, J.A., Rana, D., Singh, G., Matsuura, T., Jun Kai, T. and Shanmugasundaram, T.S. (2014), "Effect of hydrophobic surface modifying macromolecules on differently produced PVDF membranes for direct contact membrane distillation", Chem. Eng. J., 242, 387-396. https://doi.org/10.1016/j.cej.2013.11.039
  20. Shi, L., Wang, R., Cao, Y., Liang, D.T. and Tay, J.H. (2008), "Effect of additives on the fabrication of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes", J. Membr. Sci., 315(1-2), 195-204. https://doi.org/10.1016/j.memsci.2008.02.035
  21. Ulbricht, M. and Belfort, G. (1996), "Surface modification of ultrafiltration membranes by low temperature plasma. II. Graft polymerization onto polyacrylonitrile and polysulfone", J. Membr. Sci., 111(2), 193-215. https://doi.org/10.1016/0376-7388(95)00207-3
  22. Vaha-Nissi, M., Kauppi, E., Sahagian, K., Johansson, L.S., Peresin, M.S., Sievanen, J. and Harlin, A. (2012), "Growth of thin $Al_2O_3$ films on biaxially oriented polymer films by atomic layer deposition", Thin Solid Films., 522, 50-57. https://doi.org/10.1016/j.tsf.2012.09.043
  23. Wang, P., Tan, K.L., Kang, E.T. and Neoh, K.G. (2002), "Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane", J. Membr. Sci., 195(1), 103-114. https://doi.org/10.1016/S0376-7388(01)00548-8
  24. Yadav, S.K., Mahapatra, S.S., Cho, J.W., Park, H.C. and Lee, J.Y. (2010), "Enhanced mechanical and dielectric properties of poly(vinylidene fluoride)/polyurethane/multi-walled carbon nanotube nanocomposites", Fiber. Polym., 10(6), 756-760. https://doi.org/10.1007/s12221-009-0756-7
  25. Yang, Q., Kang, X.Z., Wei, D.Z., Li, W.J. and Ulbricht, M. (2005), "Surface modification of polypropylene microporous membranes with a novel glycopolymer", Chem. Mat., 17(11), 3050-3058. https://doi.org/10.1021/cm048012x
  26. Yang, Q., Chung, T.S. and Santoso, Y.E. (2007), "Tailoring pore size and pore size distribution of kidney dialysis hollow fiber membranes via dual-bath coagulation approach", J. Membr. Sci., 290(1-2), 153-163. https://doi.org/10.1016/j.memsci.2006.12.036
  27. Yu, L.Y., Xu, Z.L., Shen, H.M. and Yang, H. (2009), "Preparation and characterization of PVDF-$SiO_2$ composite hollow fiber UF membrane by sol-gel method", J. Membr. Sci., 337(1-2), 257-265. https://doi.org/10.1016/j.memsci.2009.03.054
  28. Yuan, G., Xu, G., Ji, C. and Wei, Y. (2008), "Study on diffusion-limited and reaction aggregation dynamics model in PVDF membrane formation process by NIPS method", Membr. Sci. Tech., 30, 26 p.
  29. Zhang, W., Shi, L., An, Y., Gao, L., Wu, K. and Ma, R. (2004), "A Convenient Method of Tuning Amphiphilic Block Copolymer Micellar Morphology", Macromolecules, 37(7), 2551-2555. https://doi.org/10.1021/ma035801b
  30. Zhang, M., Nguyen, Q.T. and Ping, Z. (2009), "Hydrophilic modification of poly (vinylidene fluoride) microporous membrane", J. Membr. Sci., 327(1-2), 78-86. https://doi.org/10.1016/j.memsci.2008.11.020
  31. Zhang, P.Y., Xu, Z.L., Yang, H., Wei, Y.M. and Wu, W.Z. (2013a), "Fabrication and characterization of PVDF membranes via an in situ free radical polymerization method", Chem. Eng. Sci., 97, 296-308. https://doi.org/10.1016/j.ces.2013.03.058
  32. Zhang, P.Y., Xu, Z.L., Yang, H., Wei, Y.M., Wu, W.Z. and Chen, D.G. (2013b), "Preparation and characterization of PVDF-P(PEGMA-r-MMA) ultrafiltration blend membranes via simplified blend method", Desalination, 319, 47-59. https://doi.org/10.1016/j.desal.2013.04.001
  33. Zhang, P.Y., Yang, H., Xu, Z.L., Wei, Y.M., Guo, J.L. and Chen, D.G. (2013c), "Characterization and preparation of poly(vinylidene fluoride) (PVDF) microporous membranes with interconnected bicontinuous structures via non-solvent induced phase separation (NIPS)", J. Polym. Res., 20(2), 66-78. https://doi.org/10.1007/s10965-012-0066-4
  34. Zhang, P.Y., Yang, H. and Xu, Z.L. (2012), "Preparation of Polyvinylidene Fluoride (PVDF) Membranes via Nonsolvent Induced Phase Separation Process using a Tween 80 and $H_2O$ Mixture As an Additive", Ind. Eng. Chem. Res., 51(11), 4388-4396. https://doi.org/10.1021/ie201806v
  35. Zhang, P.Y., Xu, Z.L., Yang, H., Wei, Y.M. and Wu, W.Z. (2013), "Fabrication and characterization of PVDF membranes via an in situ free radical polymerization method", Chem. Eng. Sci., 97, 296-308. https://doi.org/10.1016/j.ces.2013.03.058
  36. Zhao, L.B., Xu, Z.L., Liu, M. and Wei, Y.M. (2014), "Preparation and characterization of PSf hollow fiber membrane from PSf-HBPE-PEG400-NMP dope solution", J. Membr. Sci., 454, 184-192. https://doi.org/10.1016/j.memsci.2013.11.057
  37. Zuo, G. and Wang, R. (2013), "Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application", J. Membr. Sci., 447, 26-35. https://doi.org/10.1016/j.memsci.2013.06.053