Browse > Article

Preparation and Characterization of Graft Copolymer/$TiO_2$ Nanocomposite Polymer Electrolyte Membranes  

Koh, Jong-Kwan (Department of Chemical and Biomolecular Engineering, Yonsei University)
Roh, Dong-Kyu (Department of Chemical and Biomolecular Engineering, Yonsei University)
Patel, Rajkumar (Department of Chemical and Biomolecular Engineering, Yonsei University)
Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.20, no.1, 2010 , pp. 1-7 More about this Journal
Abstract
A graft copolymer, i.e. poly(vinylidene fluoride-co-chlorotrifluoroethylene )-g-poly(styrene sulfonic acid) (P(VDF-co-CTFE)-g-PSSA) with 47 wt% of PSSA was synthesized via atom transfer radical polymerization (ATRP). This copolymer was combined with titanium isopropoxide (TTIP) to produce graft copolymer/$TiO_2$ nanocomposite membranes via sol-gel process. $TiO_2$ precursor (TTIP) was selectively incorporated into the hydrophilic PSSA domains of the graft copolymer and grown to form $TiO_2$ nanoparticles, as confirmed by FT-IR and UV-visible spectroscopy. Water uptake and ion exchange capacity (IEC) decreased with TTIP contents due to the decrease in number of sulfonic acid in the membranes. At 5 wt% of TTIP, the mechanical properties of membranes increased while maintaining the proton conductivity.
Keywords
atom transfer radical polymerization (ATRP); graft copolymer; $TiO_2$; proton conductivity; polymer electrolyte membrane;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Y. W. Kim, J. K. Choi, J. T. Park, and J. H. Kim, "Proton conducting poly(vinylidene fluoride-co-chlorotrifluoroethylene) graft copolymer electrolyte membranes", J. Membr. Sci., 313, 315 (2008).   DOI   ScienceOn
2 A. S. Arico, V. Baglio, P. Cret, A. D. Blasi, V. Antonucci, J. Brunea, A. Chapotot, A. Bozzi, and J. Schoemans, "Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells", J. Power Sources, 123, 107 (2003).   DOI   ScienceOn
3 D. J. Kim, B. J. Chang, C. K. Shin, J. H. Kim, S. B. Lee, and H. J. Joo, "Preparation and Characterization of Fluorenyl Polymer Electrolyte Membranes Containing PFCB Groups", Membrane Journal, 16, 16 (2006).   과학기술학회마을
4 B. J. Chang, D. J. Kim, J. H. Kim, S. B. Lee, and H. J. Joo, "Synthesis and Characterization of Polybenzimidazoles Containing Perfluorocyclobutane Groups for High-temperature Fuel Cell Applications", Korean Membr. J., 9, 43 (2007).   과학기술학회마을
5 T. Schultz, S. Zhou, and K. Sundmacher, "Current Status of and Recent Developments in the Direct Methanol Fuel Cell", Chem. Eng. Technol., 24, 1223 (2001).   DOI   ScienceOn
6 K. G. Neoh, K. K. Tan, P. L. Goh, S. W. Huang, E. T. Kang, and K. L. Tan, "Electroactive polymer -$SiO_2$ nanocomposites for metal uptake", Polymer, 40, 887 (1999).   DOI   ScienceOn
7 B. Ruffmanna, H. Silvaa, B. Schulteb, and S. P. Nunes, "Organic/inorganic composite membranes for application in DMFC", Solid State Ionics, 162, 269 (2003).   DOI   ScienceOn
8 Y. Zhang, H. Zhang, C. Bi, and X. Zhu, "An inorganic/organic self-humidifYing composite membranes for proton exchange membrane fuel cell application", Electrochimica Acta, 53, 4096 (2008).   DOI   ScienceOn
9 K. T. Adjemian, R. Dominey, L. Krishnan, H. Ota, P. Majsztrik, T. Zhang, J. Mann, B. Kirby, L. Gatto, M. Velo-Simpson, J. Leahy, S. Srinivasan, J. B. Benziger, and A. B. Bocarsly, "Function and Characterization of Metal Oxide-Nafion Composite Membranes for Elevated-Temperature $H_2/O_2$ PEM Fuel Cells", Chem. Mater., 18, 2238 (2006).   DOI   ScienceOn
10 G. G. Kumar, P. Kim, A. R. Kim, K. S. Nahm, and R. N. Elizabeth, "Structural, thermal and ion transport studies of different particle size nanocomposite fillers incorporated PVdF-HFP hybrid membranes", Mater. Chem. Phys., 115, 40 (2009).   DOI   ScienceOn
11 R. Patel, S. J. Im, Y. T. Ko, J. H. Kim, and B. R. Min, "Preparation and characterization of proton conducting polysulfone grafted poly(styrene sulfonic acid) polyelectrolyte membranes", J. Ind. Eng. Chem., 15, 299 (2009).   DOI   ScienceOn
12 Z. Wang, H. Ni, C. Zhao, X. Li, T. Fu, and H. Na, "Investigation of sulfonated poly( ether ether ketone sulfone )/heteropolyacid composite membranes for high temperature fuel cell applications", J. Polym. Sci. Part B: Polym. Physi., 44, 1967 (2006).   DOI   ScienceOn
13 J. H. Lee and T. R. Lalk, "Modeling fuel cell stack systems", J. Power Sources, 73, 229 (1998).   DOI   ScienceOn
14 M. V. Moreira and G. E. da Silva, "A practical model for evaluating the performance of proton exchange membrane fuel cells", Renewable Energy, 34, 1734 (2009).   DOI   ScienceOn
15 J. Y. Song, Y. Y. Wang, and C. C. Wan, "Review of gel-type polymer electrolytes for lithium-ion batteries", J. Power Sources, 77, 183 (1999).   DOI   ScienceOn
16 Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath, "Fabrication and characterization of heteropolyacid $(H_3PW_{12}O_{40})$/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications", J. Membr. Sci., 212, 263 (2003).   DOI   ScienceOn
17 J. A. Seo, D. K. Roh, J. T. Park, J. H. Koh, S. Maken, and J. H. Kim, "Preparation of proton conducting crosslinked membranes from PS-b-PHEA diblock copolymer and poly(vinyl alcohol)", Membrane Journal, 18, 234 (2008).   과학기술학회마을
18 J. A. Seo, D. K. Roh, J. K. Koh, and J. H. Kim, "Preparation and characterization of proton conducting composite membranes from P(VDF-CTFE)g-PSPMA graft copolymer and heteropolyacid", Korean Membr. J., 10, 20 (2008).   과학기술학회마을
19 J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S Kim, and Y. M. Lee, "Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes", J. Membr. Sci., 238, 143 (2004).   DOI   ScienceOn
20 D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, "Preparation and characterization of crosslinked PV A/$SiO_2$ hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications", J. Membr. Sci., 240, 37 (2004).   DOI   ScienceOn
21 E. Tang, H. Liu, L. Sun, E. Zheng, and G. Cheng, "Fabrication of zinc oxide/poly(styrene) grafted nanocomposite latex and its dispersion", Eur. Polym. J., 43, 4210 (2007).   DOI   ScienceOn
22 J. H. Koh, Y. W. Kim, J. T. Park, B. R. Min, and J. H. Kim, "Nanofiltration membranes based on poly( vinylidene fluoride-co-chlorotrifluoroethylene)graft-poly(styrene sulfonic acid)", Polym. Adv. Tech., 19, 1643 (2008).
23 K. S. Chung, J. C. Lee, H. Lee, S. Y. Eom, and E. A. Yoo, "Synthesis of highly concentrated $TiO_2$ nanocolloids and coating on boron nitride powders", Colloids Surf. A: Physicochem. Eng. Aspects, 313, 175 (2008).   DOI   ScienceOn
24 J. H. Koh, J. T. Park, D. K. Roh, J. A. Seo, and J. H. Kim, "Synthesis of $TiO_2$ nanoparticles using amphiphilic POEM-b-PS-b-POEM triblock copolymer template film", Colloids Surf. A: Physicochem. Eng. Aspects, 329, 51 (2008).   DOI   ScienceOn
25 J. K. Koh, J. A. Seo, J. H. Koh, and J. H. Kim, "Templated synthesis of Ag loaded $TiO_2$ nanostructures using amphiphilic polyelectrolyte", Materials Letters, 63, 1360 (2009).   DOI   ScienceOn
26 M. S. Lee, S. S. Hong, and M. Mohseni, "Synthesis of photocatalytic nanosized $TiO_2$-Ag particles with sol-gel method using reduction agent", J. Molecular Catalysis A: Chemical, 242, 135 (2005).   DOI   ScienceOn
27 K. S. Chung, J. C. Lee, H. Lee, S. Y. Eom, and E. A. Yoo. "Synthesis of highly concentrated $TiO_2$ nanocolloids and coating on boron nitride powders", Colloids Surf A, 313, 175 (2008).   DOI   ScienceOn
28 X. Li, C. Liu, H. Lu, C. Zhao, Z. Wang, W. Xing, and H. Na, "Preparation and characterization of sulfonated poly( ether ether ketone ketone) proton exchange membranes for fuel cell application", J. Membr. Sci., 255, 149 (2005).   DOI   ScienceOn
29 C. H. Park, C. H. Lee, Y. S. Chung, and Y. M. Lee, "Preparation and Characterization of Crosslinked Block and Random Sulfonated Polyimide Membranes for Fuel Cell", Membrane Journal, 16, 241 (2006).   과학기술학회마을