Browse > Article
http://dx.doi.org/10.12989/mwt.2016.7.6.539

Effect of PTMGDA-PEGMA dopant on PVDF ultrafiltration membrane  

Chen, Gui-E. (School of Chemical and Environmental Engineering, Shanghai Institute of Technology)
Huang, Hui-Hong (School of Chemical and Environmental Engineering, Shanghai Institute of Technology)
Xu, Zhen-Liang (State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology)
Zhang, Ping-Yun (State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology)
Wu, Wen-Zhi (School of Chemical and Environmental Engineering, Shanghai Institute of Technology)
Sun, Li (School of Chemical and Environmental Engineering, Shanghai Institute of Technology)
Liu, Yan-Jun (School of Chemical and Environmental Engineering, Shanghai Institute of Technology)
Publication Information
Membrane and Water Treatment / v.7, no.6, 2016 , pp. 539-553 More about this Journal
Abstract
As a novel hydrophobic monomer, polytetrahydrofuran diacrylate (PTMGDA) was synthesized by the esterification reaction between polyethylene tetrahydrofuran (PTMG) and acryloyl chloride (AC). In situ free radical polymerization reaction method was utilized to fabricate poly (vinylidene fluoride) (PVDF)-PTMGDA-poly(ethylene oxide) dimethacrylate (PEGMA) ulrafiltration (UF) membranes. The performances of PVDF-PTMGDA-PEGMA UF membranes in terms of morphologies, mechanical properties, separation properties and hydrophilicities were investigated. The introduction of the PTMGDA-PEGMA dopants not only increased the membranes' pure water flux, but also improved their mechanical properties and the dynamic contact angles. The addition of the PTMGDA/PEGMA dopants led to the formation of the finger-like structure in the membrane bulk. With the increase concentration of PTMGDA/PEGMA dopants, the porosity and the mean effective pore size increased. Those performances were coincide with the physicochemical properties of the casting solutions.
Keywords
PVDF-PTMGDA-PEGMA membrane; PTMGDA-PEGMA dopants; in situ free radical polymerization; hydrophilicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Awanis Hashim, N., Liu, F., Moghareh Abed, M.R. and Li, K. (2012), "Chemistry in spinning solutions: Surface modification of PVDF membranes during phase inversion", J. Membr. Sci., 415-416, 399-411.   DOI
2 Boributh, S., Chanachai, A. and Jiraratananon, R. (2009), "Modification of PVDF membrane by chitosan solution for reducing protein fouling", J. Membr. Sci., 342(1-2), 97-104.   DOI
3 Chen, G.E., Wu, W.Z., Zhang, P.Y. and Xu, Z.L. (2014), "Influence of residence time on performances of PVDF membranes", J. Appl. Polym. Sci., 131.
4 Cui, Z., Drioli, E. and Lee, Y.M. (2014), "Recent progress in fluoropolymers for membranes", Prog. Polym. Sci., 39(1), 164-198.   DOI
5 Forsythe, J.S. and Hill, D.J.T. (2000), "The radiation chemistry of fluoropolymers", Prog. Polym. Sci., 25(1), 101-136.   DOI
6 Hester, J.F., Banerjee, P. and Mayes, A.M. (1999), "Preparation of protein-resistant surfaces on poly (vinylidene fluoride) membranes via surface segregation", Macromolecules, 32(5), 1643-1650.   DOI
7 Katsoufidou, K., Yiantsios, S.G. and Karabelas, A.J. (2005), "A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling", J. Membr. Sci., 266(1-2), 40-50.   DOI
8 Khayet, M., Feng, C.Y., Khalbe, K.C. and Matsuura, T. (2002), "Preparation and characterization of polyvinylidene fluoride hollow fiber membrane for ultrafiltration", Polymer., 43, 3879-3890.   DOI
9 Letchford, K. and Burt, H. (2007), "A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes", Eur. J. Pharm. Biopharm., 65(3), 259-269.   DOI
10 Kim, Y., Rana, D., Matsuura, T. and Chung, W.-J. (2009), "Influence of surface modifying macromolecules on the surface properties of poly(ether sulfone) ultra-filtration membranes", J. Membr. Sci., 338(1-2), 84-91.   DOI
11 Li, J.H., Li, M.Z., Jing, M., Wang, J.B., Shao, X.S. and Zhang, Q.Q. (2012), "Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive", Appl. Surf. Sci., 258(17), 6398-6405.   DOI
12 Li, J.-H., Shao, X.S., Zhou, Q., Li, M.Z. and Zhang, Q.Q. (2013), "The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance", Appl. Surf. Sci., 265, 663-670.   DOI
13 Liu, F., Xu, Y.Y., Zhu, B.K., Zhang, F. and Zhu, L.P. (2009), "Preparation of hydrophilic and fouling resistant poly(vinylidene fluoride) hollow fiber membranes", J. Membr. Sci., 345(1-2), 331-339.   DOI
14 Liu, F., Hashim, N.A., Liu, Y., Moghareh Abed, M.R. and Li, K. (2011), "Progress in the production and modification of PVDF membranes", J. Membr. Sci., 375(1-2), 1-27.   DOI
15 Shi, L., Wang, R., Cao, Y., Liang, D.T. and Tay, J.H. (2008), "Effect of additives on the fabrication of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes", J. Membr. Sci., 315(1-2), 195-204.   DOI
16 Liu, B., Chen, C., Li, T., Crittenden, J. and Chen, Y. (2013a), "High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-PEGMA", J. Membr. Sci., 445, 66-75.   DOI
17 Liu, M., Wei, Y.M., Xu, Z.L., Guo, R.Q. and Zhao, L.B. (2013b), "Preparation and characterization of polyethersulfone microporous membrane via thermally induced phase separation with low critical solution temperature system", J. Membr. Sci., 437, 169-178.   DOI
18 Loh, C.H., Wang, R., Shi, L. and Fane, A.G. (2011), "Fabrication of high performance polyethersulfone UF hollow fiber membranes using amphiphilic Pluronic block copolymers as pore-forming additives", J. Membr. Sci., 380(1-2), 114-123.   DOI
19 Neugebauer, D. (2007), "Graft copolymers with poly(ethylene oxide) segments", Polym. Int., 56(12), 1469-1498.   DOI
20 Prince, J.A., Rana, D., Singh, G., Matsuura, T., Jun Kai, T. and Shanmugasundaram, T.S. (2014), "Effect of hydrophobic surface modifying macromolecules on differently produced PVDF membranes for direct contact membrane distillation", Chem. Eng. J., 242, 387-396.   DOI
21 Ulbricht, M. and Belfort, G. (1996), "Surface modification of ultrafiltration membranes by low temperature plasma. II. Graft polymerization onto polyacrylonitrile and polysulfone", J. Membr. Sci., 111(2), 193-215.   DOI
22 Vaha-Nissi, M., Kauppi, E., Sahagian, K., Johansson, L.S., Peresin, M.S., Sievanen, J. and Harlin, A. (2012), "Growth of thin $Al_2O_3$ films on biaxially oriented polymer films by atomic layer deposition", Thin Solid Films., 522, 50-57.   DOI
23 Yuan, G., Xu, G., Ji, C. and Wei, Y. (2008), "Study on diffusion-limited and reaction aggregation dynamics model in PVDF membrane formation process by NIPS method", Membr. Sci. Tech., 30, 26 p.
24 Wang, P., Tan, K.L., Kang, E.T. and Neoh, K.G. (2002), "Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane", J. Membr. Sci., 195(1), 103-114.   DOI
25 Yadav, S.K., Mahapatra, S.S., Cho, J.W., Park, H.C. and Lee, J.Y. (2010), "Enhanced mechanical and dielectric properties of poly(vinylidene fluoride)/polyurethane/multi-walled carbon nanotube nanocomposites", Fiber. Polym., 10(6), 756-760.   DOI
26 Yang, Q., Kang, X.Z., Wei, D.Z., Li, W.J. and Ulbricht, M. (2005), "Surface modification of polypropylene microporous membranes with a novel glycopolymer", Chem. Mat., 17(11), 3050-3058.   DOI
27 Yang, Q., Chung, T.S. and Santoso, Y.E. (2007), "Tailoring pore size and pore size distribution of kidney dialysis hollow fiber membranes via dual-bath coagulation approach", J. Membr. Sci., 290(1-2), 153-163.   DOI
28 Yu, L.Y., Xu, Z.L., Shen, H.M. and Yang, H. (2009), "Preparation and characterization of PVDF-$SiO_2$ composite hollow fiber UF membrane by sol-gel method", J. Membr. Sci., 337(1-2), 257-265.   DOI
29 Zhang, W., Shi, L., An, Y., Gao, L., Wu, K. and Ma, R. (2004), "A Convenient Method of Tuning Amphiphilic Block Copolymer Micellar Morphology", Macromolecules, 37(7), 2551-2555.   DOI
30 Zhang, M., Nguyen, Q.T. and Ping, Z. (2009), "Hydrophilic modification of poly (vinylidene fluoride) microporous membrane", J. Membr. Sci., 327(1-2), 78-86.   DOI
31 Zhao, L.B., Xu, Z.L., Liu, M. and Wei, Y.M. (2014), "Preparation and characterization of PSf hollow fiber membrane from PSf-HBPE-PEG400-NMP dope solution", J. Membr. Sci., 454, 184-192.   DOI
32 Zhang, P.Y., Xu, Z.L., Yang, H., Wei, Y.M. and Wu, W.Z. (2013a), "Fabrication and characterization of PVDF membranes via an in situ free radical polymerization method", Chem. Eng. Sci., 97, 296-308.   DOI
33 Zhang, P.Y., Xu, Z.L., Yang, H., Wei, Y.M., Wu, W.Z. and Chen, D.G. (2013b), "Preparation and characterization of PVDF-P(PEGMA-r-MMA) ultrafiltration blend membranes via simplified blend method", Desalination, 319, 47-59.   DOI
34 Zhang, P.Y., Yang, H., Xu, Z.L., Wei, Y.M., Guo, J.L. and Chen, D.G. (2013c), "Characterization and preparation of poly(vinylidene fluoride) (PVDF) microporous membranes with interconnected bicontinuous structures via non-solvent induced phase separation (NIPS)", J. Polym. Res., 20(2), 66-78.   DOI
35 Zhang, P.Y., Yang, H. and Xu, Z.L. (2012), "Preparation of Polyvinylidene Fluoride (PVDF) Membranes via Nonsolvent Induced Phase Separation Process using a Tween 80 and $H_2O$ Mixture As an Additive", Ind. Eng. Chem. Res., 51(11), 4388-4396.   DOI
36 Zhang, P.Y., Xu, Z.L., Yang, H., Wei, Y.M. and Wu, W.Z. (2013), "Fabrication and characterization of PVDF membranes via an in situ free radical polymerization method", Chem. Eng. Sci., 97, 296-308.   DOI
37 Zuo, G. and Wang, R. (2013), "Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application", J. Membr. Sci., 447, 26-35.   DOI