DOI QR코드

DOI QR Code

𝛽-사이클로덱스트린을 함침시킨 PVDF 혼합기질 비대칭막의 제조와 내오염성 평가

Preparation and Anti-fouling Properties of PVDF Mixed Matrix Asymmetric Membranes Impregnated with 𝛽-cyclodextrin

  • 신성주 (충북대학교 공과대학 공업화학과) ;
  • 이종성 (본제이워터스(주) 기술연구소) ;
  • 이정길 (본제이워터스(주) 기술연구소) ;
  • 염경호 (충북대학교 공과대학 공업화학과)
  • Shin, Sung Ju (Department of Engineering Chemistry, Chungbuk National University) ;
  • Lee, Jong Sung (Institute of Technology, Bonjwaters Co.) ;
  • Lee, Jeong Gil (Institute of Technology, Bonjwaters Co.) ;
  • Youm, Kyung Ho (Department of Engineering Chemistry, Chungbuk National University)
  • 투고 : 2021.12.19
  • 심사 : 2021.12.26
  • 발행 : 2021.12.31

초록

Poly(vinylidene fluoride) (PVDF) 막은 내구성 및 열적·화학적 안정성 등의 물성은 우수하나 소수성이 커서 수투과도가 낮고 단백질 및 유기물에 의한 막오염이 쉽게 발생한다. 본 연구에서는 PVDF 막의 내오염성을 개선시키고자 바이오 기능성 물질인 𝛽-cyclodextrin (𝛽-CD)을 PVDF 막 구조 내에 분산 함침시킨 PVDF/𝛽-CD 혼합기질 비대칭막을 상변환법을 통해 제조하고, 𝛽-CD 함침량에 따른 순수 투과 유속(PWF) 측정과 BSA 용액을 대상으로 한 막여과 실험을 수행하여 내오염성 특성을 평가하였다. 이 결과 PVDF 고분자 매질 내에 𝛽-CD를 함침시키면 막의 친수성을 증가시켜 접촉각을 감소시키고 이로 인해 내오염성을 향상시킬 수 있었다. 𝛽-CD 함침량이 2 wt%인 도프용액을 사용하여 제조된 PVDF/𝛽-CD 혼합기질 비대칭막의 PWF는 64 L/m2·h, BSA 배제도는 95%를 나타내었으며, 𝛽-CD를 첨가하지 않고 제조된 pristine PVDF 막에 비해 투과 유속 향상성이 최대 80%에 달해 𝛽-CD를 첨가시킴으로서 PVDF 막의 내오염성을 증가시킬 수 있었다.

Poly(vinylidene fluoride) (PVDF) membrane has a good membrane durability because of its high mechanical resistance, thermal and chemical stability. However, the strong hydrophobic property of PVDF membrane can induce a low water permeability and easy fouling by proteins and organic matters. In order to improve the anti-fouling properties of PVDF membrane, the PVDF mixed matrix asymmetric membranes impregnated with biofunctional material 𝛽-cyclodextrin (𝛽-CD) in the membrane structure were prepared by phase inversion method. The membrane filtration experiments of pure water and BSA solution were performed using the PVDF/𝛽-CD mixed matrix asymmetric membranes prepared according to the 𝛽-CD contents. The experiments showed that the introduction of 𝛽-CD into the PVDF polymer matrix contributed to increase in the hydrophilic property of the PVDF membranes, and this led to the reduction of contact angles and improvement of anti-fouling properties. The PVDF/𝛽-CD membrane which was prepared using the dope solution with a 2 wt% 𝛽-CD content represented 64 L/m2·h of pure water flux, 95% of BSA rejection and maximum 80% of flux enhancements compared to flux results of the pristine PVDF membrane.

키워드

과제정보

본 논문은 2020년도 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 사회맞춤형 산학협력 선도대학(LINC+) 육성사업의 연구결과입니다.

참고문헌

  1. K. H. Youm, H. Y. Lee, and Y. C. Shin, "Water treatment using separation membranes", pp. 138-141, Sin-A Publishing, Jeju, Korea (2011).
  2. M. Mulder, "Basic principles of membrane technology", 2nd Ed., pp. 51-59, Kluwer Academic Publishers, Dordrecht, the Netherlands (1996).
  3. B. M. Jun, H. K. Lee, W. J. Kim, J. H. Park, J. H. Kim, and Y. N. Kwon, "Current research trends on surface modification of pressure-driven membranes for fouling mitigation", Membr. J., 28(1), 1 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.1
  4. C. Casado-Coterillo, "Mixed matrix membranes", Membranes, 9, 149 (2019). https://doi.org/10.3390/membranes9110149
  5. M. S. Lee and K. H. Youm, "Preparation of PES-TiO2 hybrid membranes and evaluation of membrane properties", Membr. J., 17(3), 219 (2007).
  6. S. H. Lee, M. S. Lee, and K. H. Youm, "Preparation and characterization of mixed matrix membrane consisting of polyethersulfone and ZnO nanoparticles", Membr. J., 26(6), 463 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.6.463
  7. Y. S. Kang, J. H. Lim, and I. S. Kim, "Preparation of polysulfone composite ultrafiltration hollow fiber membranes incorporating nano-size fumed silica with enhanced antifouling properties", Membr. J., 28(6), 379 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.6.379
  8. S. Yang, Q. Zou, T. Wang, and L. Zhang, "Effects of GO and MOF@GO on the permeation and anti-fouling properties of cellulose acetate ultrafiltration membrane", J. Membr. Sci., 569, 48 (2019). https://doi.org/10.1016/j.memsci.2018.09.068
  9. D. W. Lee and R. Patel, "Graphene oxide incorporated antifouling thin film composite membrane for application in desalination and clean energy harvesting processes", Membr. J., 31(1), 16 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.1.16
  10. Z. X. Yu, M. Jun, W. Z. Hui, W. Gang, J. Jin, S. F. Mei, and S. L. Xi, Zhao, "Hyperbranched-polymer functionalized multi-walled carbon nanotubes for poly(vinylidene fluoride) membranes: from dispersion to blended fouling-control membrane", Desalination, 303, 29 (2012). https://doi.org/10.1016/j.desal.2012.07.009
  11. J. Hong and Y. He, "Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes", Desalination, 302, 71 (2012). https://doi.org/10.1016/j.desal.2012.07.001
  12. S. Li and W. C. Purdy, "Cyclodextrins and their applications in analytical chemistry", Chem. Rev., 92, 1457 (1992). https://doi.org/10.1021/cr00014a009
  13. F. V. Adams, E. N. Nxumalo, R. W. M. Krause, E. M. V. Hoek, and B. B. Mamba, "Preparation and characterization of polysulfone/β-cyclodextrin polyurethane composite nanofiltration membranes", J. Membr. Sci., 405-406, 291 (2012). https://doi.org/10.1016/j.memsci.2012.03.023
  14. F. V. Adams, E. N. Nxumalo, R. W. M. Krause, E. M. V. Hoek, and B. B. Mamba, "The influence of solvent properties on the performance of polysulfone/β-cyclodextrin polyurethane mixed-matrix membranes", J. Appl. Polym. Sci., 130, 2005 (2013). https://doi.org/10.1002/app.39378
  15. Z. Yu, Y. Pan, Y. He, G. Zeng, H. Shi, and H. Di, "Preparation of a novel anti-fouling β-cyclodextrin-PVDF membrane", RSC Adv., 5, 51364 (2015). https://doi.org/10.1039/C5RA04894J
  16. H. Wu, B. Tang and P. Wu, "Preparation and characterization of anti-fouling β-cyclodextrin/polyester thin film nanofiltration composite membrane", J. Membr. Sci., 428, 301 (2013). https://doi.org/10.1016/j.memsci.2012.09.063
  17. Y. He, J. Miao, Z. Jiang, K. Tu, H. Yang, S. Chen, L. Zhang, and R. Zhang, "Improving the anti-fouling property and permeate flux of hollow fiber composite nanofiltration membrane using β-cyclodextrin", Sci. Rep., 9, 1 (2019). https://doi.org/10.1038/s41598-018-37186-2
  18. H. S. Choi and H. H. Park, "Preparation of higher reinforced PVDF hollow fiber microfiltration membrane", Membr. J., 20(4), 320 (2010).
  19. M. Sadrzadeh and S. Bhattacharjee, "Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives", J. Membr. Sci., 441, 31 (2013). https://doi.org/10.1016/j.memsci.2013.04.009
  20. X. Chang, Z. Wang, S. Quan, Y. Xu, Z. Jiang, and L. Shao, "Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance", Appl. Surf. Sci., 316, 537 (2014). https://doi.org/10.1016/j.apsusc.2014.07.202
  21. M. A. Tofighy, T. Mohammadi, and M. H. Sadeghi, "High-flux PVDF/PVP nanocomposite ultrafiltration membrane incorporated with graphene oxide nanoribbones with improved antifouling properties", J. Appl. Polym. Sci., 138, 49718 (2020). https://doi.org/10.1002/app.49718
  22. A. J. Reuvers and C. A. Smolder, "Formation of membranes by means of immersion precipitation. Part II. The mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water", J. Membr. Sci., 34, 67 (1987). https://doi.org/10.1016/S0376-7388(00)80021-6