• Title/Summary/Keyword: poly(styrene-co-maleic acid)

Search Result 19, Processing Time 0.026 seconds

Performance Investigation of Water Vapor Permeation Using PVA/PSSA-MA Membranes (PVA/PSSA-MA막을 이용한 수증기 투과 성능에 관한 연구)

  • Rhim Ji-Won;Yun Tae-Il;Seo Moo-Young;Cho Hyun-Il;Ha Seong-Yong;Nam Sang-Yong
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.153-158
    • /
    • 2006
  • The crosslinked poly(vinyl alcohol) (PVA) mwmbranes with poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) were used to measure the water vapor and air permeabilities at 25 and $35^{\circ}C$. In addition, the contact angles of crosslinked PVA membranes were observed and increased with PSSA-MA contents. The water vapor permeability of 15300 Baller (1 Baller=$10^{-10}cm^3(STP){\cdot}cm/cm^2{\cdot}s{\cdot}cmHg$) was shown the maximum value at $35^{\circ}C$ when PSSA-MA=7 wt% membrane was used. The gas permeability of 146 Barrer was indicated the maximum at PSSA-MA=7 wt% at $35^{\circ}C$ and $P(H_2O)/P(Air)$ was the highest value 109.2 at $25^{\circ}C$.

Preparation and Characterization of PVA/PSSA-MA Electrolyte Membranes Containing Silica Compounds for Fuel Cell Application (실리카 화합물을 함유한 PVA/PSSA-MA 전해질 막의 제조 및 특성과 연료전지로의 응용)

  • Byun, Hong-Sik;Kim, Dae-Hoon;Lee, Byung-Seong;Lee, Bo-Sung;Yoon, Seok-Won;Rhim, Ji-Won
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.336-344
    • /
    • 2008
  • This manuscript deals with the investigation of the possibility of the crosslinked poly(vinyl alcohol) membranes with both poly(styrene sulfonic acid-co-maleic acid) and 3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA) for the fuel cell application. The studies were focused on the characterization of the resulting membranes through water content, thermal gravimetric analysis, ion exchange capacity, ion conductivity and methanol permeability measurements and then compared with the existing Nafion membrane. Typically, the ion conductivity lied in the range of $10^{-3}$ to $10^{-2}\;S/cm$ while the methanol permeability showed the range of $10^{-6}$ to $10^{-8}\;cm^2/s$.

Influence of Silica Content in Crosslinked PVA/PSSA_MA/Silica Hybrid Membrane for Direct Methanol Fuel Cell (DMFC)

  • Kim, Dae-Sik;Guiver, Michael D.;Seo, Mu-Young;Cho, Hyun-Il;Kim, Dae-Hoon;Rhim, Ji-Won;Moon, Go-Young;Nam, Sang-Yong
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.412-417
    • /
    • 2007
  • In the present study, crosslinked poly(vinyl alcohol) (PVA) membranes were prepared at different temperatures using poly(styrene sulfonic acid-co-maleic acid) (PSSA_MA) (PVA:PSSA_MA = 1:9). The hybrid mem-branes were prepared by varying the TEOS content between 5 and 30 wt%. The PSSA_MA was used both as a crosslinking agent and the hydrophilic group donor ($-SO_3H$ and/or-COOH). The proton conductivity increased with up to 20 wt% TEOS, but decreased above this level, although the water content decreased with increasing TEOS content. This result suggests that the silica doped into the membrane improved the formation of proton-conduction pathways due to the absorption of molecular water. The PVA/PSSA_MA/Silica containing TEOS 20% showed both high proton conductivity (0.026 S/cm at $90^{\circ}C$) and low methanol permeability ($5.55{\times}10^{-7}cm^2/s$).

Preparation and Characterization of Proton Conducting Crosslinked Membranes Using Polymer Blends (폴리머 블렌딩을 이용한 수소 전도성 가교형 막의 제조와 그 특성)

  • Kim, Jong-Hak;Lee, Do-Kyoung;Choi, Jin-Kyu;Seo, Jin-Ah;Roh, Dong-Kyu
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.311-317
    • /
    • 2007
  • Proton conducting crosslinked membranes have been prepared by polymer blending, which consist of poly(vinyl alcohol-co-ethylene) (PVA-co-PE) and poly(styrene sulfonic acid-co-maleic acid) (PSSA-co-PMA) at 50 : 50 wt ratio. Two kinds of PSSA-co-PMA copolymer with 3 : 1 and 1 : 1 the molar ratio of PSSA to PMA wereused as a proton conducting source. The ethylene content of PVA-co-PE was also changed as 0, 27 and 44 mol%. The membranes were thermally crosslinked via the esterification reaction between -OH of PVA and -COOH of PMA, as demonstrated by FT-IR spectroscopy (PVA-co-PE)/(PSSA-co-PMA) membranes with 3 : 1 the molar ratio of PSSA to PMA showed higher ion exchange capacity (IEC), lower water uptake and higher proton conductivity than those with 1 : 1 molar ratio. As the PE concentration increased, the IEC values, water uptake and proton conductivities decreased continuously. These properties were elucidated in terms of competitive effect between the concentration of sulfonic acid, hydrophilicity and the crosslinked structure of membranes.

Effect of Ion Exchange Capacity on Salt Removal Rate in Membrane Capacitive Deionization Process (이온교환용량이 막 결합형 축전식 탈염공정에서 염 제거율에 미치는 영향)

  • Yun, Won Seob;Cheong, Seong Ihl;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.5
    • /
    • pp.332-339
    • /
    • 2018
  • In order to investigate the effect of ion exchange capacity of ion exchange membranes on the salt removal efficiency in the membrane capacitive deionization process, sulfosuccinic acid (SSA) as the cross linking agent was added to poly(vinyl alcohol)(PVA) and sulfonic acid-co-maleic acid (PSSA_MA) was put into PVA at different concentrations of 10, 50 and 90 wt% relative to PVA. As the content of PSSA_MA increased, the water content and ion exchange capacity increased and the salt removal efficiency was also increased in the membrane capacitive deionization process. The highest salt removal efficiency was 65.5% at 100 mg/L NaCl feed at a flow rate, 15 mL/min and adsorption, 1.4 V/5 min for PSSA_MA 90 wt%.

Preparation and Adsorption Properties of PA6/PSMA-OA Molecularly Imprinted Composite Membranes in Supercritical CO2

  • Zhang, Qing;Zhang, Xingyuan;Zhang, Wencheng;Pan, Jian;Liu, Ling;Zhang, Haitao;Zhao, Dong;Li, Zhi
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3348-3354
    • /
    • 2011
  • Oleanolic acid (OA) as template molecule, polyamide-6 (PA6) as basement membrane and poly(styrene-comaleic acid) (PSMA) were used to prepare PA6/PSMA-OA molecularly imprinted composite membranes by phase inversion method in supercritical $CO_2$ ($ScCO_2$). The template molecule (OA), [poly(styrene-co-maleic anhydride) (PSMAH), PSMA, molecularly imprinted membranes (MIMs) imprinting OA and MIMs after elution were all characterized by Fourier transform infrared spectroscopy (FTIR). The conditions that were the mass ratio between PSMA and OA from 3:1 to 8:1, temperature of $ScCO_2$ from $35^{\circ}C$ to $50^{\circ}C$ and pressure of $ScCO_2$ 12 MPa to 17 MPa were studied. It was obtained the largest adsorption rate and purity of OA after adsorption of the resultant MIMs, 50.41% and 96.15% respectively. After using PA6 film and non-woven fabrics as basement membrane respectively, it was found that smaller aperture of PA6 was used as basement membrane, a higher adsorption rate and a higher purity of OA after adsorption of the MIMs were obtained, and so were the stability and reproducibility of the resultant MIMs. After template molecules being removed, the MIMs had effective selectivity hydrogen bonding to separately bind in the binary components to the template molecules-oleanolic acid.

Preparation and Characterization of PVA/PSSA-MA Electrolyte Membranes Containing Silica Compounds and Surface Fluorination for Fuel Cell Applications (연료전지 응용을 위한 실리카 성분을 함유하며 표면불소화된 PVA/PSSA-MA 막의 제조 및 특성 연구)

  • Kim, Dae-Hoon;Lee, Bo-Sung;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.540-546
    • /
    • 2010
  • In this manuscript, in order to reduce methanol permeability and, at the same time, to increase proton conductivity THS-PSA containing silica compound, responsible for methanol permeability reduction, and sulfonic acid, responsible for proton conductivity enhancement, was applied onto PVA/PSSA-MA membranes. And in order to improve durability, the resulting membranes, PVA/PSSAMA/THS-PSA, were exposed to 500ppm F2 gas at varying reaction times. The surface-fluorinated membranes were characterized through the measurement of contact angles, thermo-gravimetric analysis, and X-ray photoelectron spectroscopy to observe the physico-chemical changes. For the evaluation of the electro-chemical changes in the resulting membranes, its water contents, ion exchange capacity, proton conductivity, and methanol permeability were measured and then compared with the commercial membrane, Nafion 115. Finally, the membran electrode assembly(MEA) was prepared and the cell voltage against the current density was measured. As fluorination time increased, the contents of F2 increased up to maximum 4.3% and to depth of 50 nm. At 60 min of fluorination, the proton conductivity was 0.036 S/cm, larger than Nafion 115 at 0.024 S/cm, and the methanol permeability was $9.26E-08cm^2/s$, less than Nafion 115 at $1.17E-06cm^2/s$.

Composite Membrane Preparation for Low Pressure Using Salting-Out Method and Its Application to Nanofiltration Process (염석법에 의한 저압용 역삼투막 제조 및 NF로의 적용)

  • Jeon, Yi Seul;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.440-446
    • /
    • 2015
  • Nanofiltration composite membranes were prepared through the ion exchange polymers coating onto the porous microfiltration polyethylene (PE) membrane surfaces the salting-out and phase separated and pressurization (PSP) methods. The existence of coating on the surfaces was confirmed by the scanning electronic microscopy. The resulting membranes were characterized under the various conditions, such as the coating material, coating time, ionic strength etc., in terms of flux and rejection for NaCl 100 ppm solution. Under the same coating conditions of 10,000 ppm coating solution concentration and 3 atm coating pressure for both the coating materials of PEI and PSSA_MA, the flux 91.2 LMH and rejection 64.6% were obtained for PEI whereas 122.7 LMH and 38.1% were observed for PSSA_MA. From this study, it may be concluded that the composite membrane preparation is possible.