Preparation and Characterization of PVA/PSSA-MA Electrolyte Membranes Containing Silica Compounds and Surface Fluorination for Fuel Cell Applications

연료전지 응용을 위한 실리카 성분을 함유하며 표면불소화된 PVA/PSSA-MA 막의 제조 및 특성 연구

  • Kim, Dae-Hoon (Department of Chemical Engineering, Hannam University) ;
  • Lee, Bo-Sung (Department of Chemical Engineering, Hannam University) ;
  • Rhim, Ji-Won (Department of Chemical Engineering, Hannam University)
  • 김대훈 (한남대학교 생명.나노과학대학 나노생명화학공학과) ;
  • 이보성 (한남대학교 생명.나노과학대학 나노생명화학공학과) ;
  • 임지원 (한남대학교 생명.나노과학대학 나노생명화학공학과)
  • Received : 2010.06.07
  • Accepted : 2010.08.27
  • Published : 2010.11.25

Abstract

In this manuscript, in order to reduce methanol permeability and, at the same time, to increase proton conductivity THS-PSA containing silica compound, responsible for methanol permeability reduction, and sulfonic acid, responsible for proton conductivity enhancement, was applied onto PVA/PSSA-MA membranes. And in order to improve durability, the resulting membranes, PVA/PSSAMA/THS-PSA, were exposed to 500ppm F2 gas at varying reaction times. The surface-fluorinated membranes were characterized through the measurement of contact angles, thermo-gravimetric analysis, and X-ray photoelectron spectroscopy to observe the physico-chemical changes. For the evaluation of the electro-chemical changes in the resulting membranes, its water contents, ion exchange capacity, proton conductivity, and methanol permeability were measured and then compared with the commercial membrane, Nafion 115. Finally, the membran electrode assembly(MEA) was prepared and the cell voltage against the current density was measured. As fluorination time increased, the contents of F2 increased up to maximum 4.3% and to depth of 50 nm. At 60 min of fluorination, the proton conductivity was 0.036 S/cm, larger than Nafion 115 at 0.024 S/cm, and the methanol permeability was $9.26E-08cm^2/s$, less than Nafion 115 at $1.17E-06cm^2/s$.

본 실험실에서 연구되어진 poly(vinyl alcohol)(PVA)/poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) 이온교환막에 메탄올 투과도 감소를 위하여 실리카기를 함유하고 또한 프로톤 도너 역할을 할 수 있는 3-(trihydroxysilyl)-1-propanesulfonic acid(THS-PSA)를 도입하여 가교된 PVA/PSSA-MA/THS-PSA 막을 제조하였다. 제조된 막의 내구성 향상을 위하여 500 ppm $F_2$ 기체를 이용하여 시간에 따라 직접불소화를 실시하였으며, 불소기의 도입에 따른 막의 물리화학적 변화를 관찰하기 위하여 접촉각 특정, 열 중량분석 및 X-ray photoelectron spectroscopy(XPS)를 통해 확인하였다. 표면불소화된 PVA/PSSA-MA/THS-PSA막의 전기화학적 특성을 평가하기 위하여 함수율, 이온교환용량, 이온전도도, 메탄올 투과도 측정을 실시하여 상용화된 Nafion 115와 비교하였다. 불소화 시간이 증가함에 따라 도입된 불소의 함량은 최고 4.3%의 함량과 50 nm의 침투 깊이를 나타내었다. 불소화 시간이 60분 경과했을 때 이온전도도는 0.036 S/cm으로 Nafion 115의 0.024보다 향상되었으며, 메탄올 투과도는 $9.26E-08cm^2/s$으로 Nafion의 1.17E-06보다 감소되었음을 확인하였다. 또한 MEA를 제작하여 전류밀도에 따른 셀 전압을 측정하였다.

Keywords

Acknowledgement

Supported by : 한남대학교

References

  1. B. C. H. Steele and A. Heinzel, Nature, 414, 345 (2001). https://doi.org/10.1038/35104620
  2. N. W. Deluca and Y. A. Elabd, J. Polym. Sci. Part B: Polym. Phys., 44, 2201 (2006). https://doi.org/10.1002/polb.20861
  3. K. Miyatake, H. Iyotani, K. Yamamoto, and E. Tsuchida, Macromolecules, 29, 6969 (1996). https://doi.org/10.1021/ma960768x
  4. C. H. Lee, C. H. Park, and Y. M. Lee, J. Memb. Sci., 313, 199 (2008). https://doi.org/10.1016/j.memsci.2008.01.004
  5. Fuel Cell Handbook, sixth ed., B/T Books, Orinda, CA (2002).
  6. Y. Gao, G. P. Robertson, M. D. Guiver, X. Jian, S. D. Mikhailenko, K. Wang, and S. Kaliaguine, J. Memb. Sci., 227, 39 (2003). https://doi.org/10.1016/j.memsci.2003.08.020
  7. K. Scott, W. M. Taama, and P. Argyropoulos, J. Memb. Sci., 171, 119 (2000). https://doi.org/10.1016/S0376-7388(99)00382-8
  8. Y. A. Elabd, E. Napadensky, J. M. Sloan, D. M. Crawford, and C. W. Walker, J. Memb. Sci., 217, 227 (2003). https://doi.org/10.1016/S0376-7388(03)00127-3
  9. B. S. Pivovar, Y. Wang, and E. L. Cussler, J. Memb. Sci., 154, 155 (1999). https://doi.org/10.1016/S0376-7388(98)00264-6
  10. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, Solid State Ionics, 176, 117 (2005). https://doi.org/10.1016/j.ssi.2004.07.011
  11. D. S. Kim, M. D. Guiver, T. I. Yun, M. Y. Seo, and J. W. Rhim, J. Memb. Sci., 281, 156 (2006). https://doi.org/10.1016/j.memsci.2006.03.025
  12. M. S. Kang, J. H. Kim, J. Won, S. H. Moon, and Y. S. Kang, J. Memb. Sci., 247, 127 (2005). https://doi.org/10.1016/j.memsci.2004.09.017
  13. D. H. Kim, B. S. Lee, B. S. Lee, S. W. Yoon, J. W. Rhim, and H. S. Byun, Korean Membrane Journal, 18, 336 (2008).
  14. D. S. Kim, H. I. Cho, D. H. Kim, B. S. Lee, B. S. Lee, S. W. Yoon, Y. S. Kim, G. Y. Moon, H. S. Byun, and J. W. Rhim, J. Memb. Sci., 342, 138 (2009). https://doi.org/10.1016/j.memsci.2009.06.034
  15. A. P. Kharitonov, R. Taege, G. Ferrier, V. V. Teplyakov, D. A. Syrtsova, and G. H. Koops, J. Fluor. Chem., 126, 251 (2005). https://doi.org/10.1016/j.jfluchem.2005.01.016
  16. A. Tressaud, E. Durand, C. Labrugere, A. P. Kharitonov, and L. N. Kharitonova, J. Fluor. Chem., 128, 378 (2007). https://doi.org/10.1016/j.jfluchem.2006.12.015