Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.332

Effect of Ion Exchange Capacity on Salt Removal Rate in Membrane Capacitive Deionization Process  

Yun, Won Seob (Department of Advanced Materials and Chemical Engineering, Hannam University)
Cheong, Seong Ihl (Department of Advanced Materials and Chemical Engineering, Hannam University)
Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
Publication Information
Membrane Journal / v.28, no.5, 2018 , pp. 332-339 More about this Journal
Abstract
In order to investigate the effect of ion exchange capacity of ion exchange membranes on the salt removal efficiency in the membrane capacitive deionization process, sulfosuccinic acid (SSA) as the cross linking agent was added to poly(vinyl alcohol)(PVA) and sulfonic acid-co-maleic acid (PSSA_MA) was put into PVA at different concentrations of 10, 50 and 90 wt% relative to PVA. As the content of PSSA_MA increased, the water content and ion exchange capacity increased and the salt removal efficiency was also increased in the membrane capacitive deionization process. The highest salt removal efficiency was 65.5% at 100 mg/L NaCl feed at a flow rate, 15 mL/min and adsorption, 1.4 V/5 min for PSSA_MA 90 wt%.
Keywords
Membrane capacitive deionization (MCDI); Ion exchange capacity (IEC); PVA/SSA/PSSA_MA; Salt removal efficiency;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Hassanvand, G. Q. Chen, P. A. Webley, and S. E. Kentish, "A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization", Water Res., 131, 100 (2018).   DOI
2 B. M. Asquith, J. Meier-Haack, and B. P. Ladewig, "Poly(arylene ether sulfone) copolymers as binders for capacitive deionization activated carbon electrodes", Chem. Eng. Res. Des., 104, 81 (2015).   DOI
3 S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization", Prog. Mater. Sci., 58, 1388 (2013).   DOI
4 J. H. Ryu, T. J. Kim, T. Y. Lee, and I. B. Lee, "A study on modeling and simulation of capacitive deionization process for waste water treatment", J. Taiwan. Inst. Chem. E., 41, 506 (2010).   DOI
5 Y. J. Kim and J. H. Choi, "Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer", Water Res., 44, 990 (2010).   DOI
6 J. W. Lee, H. I. Kim, H. J. Kim, H. S. Shin, J. S. Kim, B. I. Jeong, and S. G. Park, "Desalination effects of capacitive deionization process using activated carbon composite electrodes", J. Korean Electrochem. Soc., 12, 287 (2009).   DOI
7 K. W. Kang and T. S. Hwang, "Synthesis and characteristics of partially fluorinated poly(vinylidene fluroide)(PVDF) cation exchange membrane via direct sulfonation", Membr. J., 25, 406 (2015).   DOI
8 M. A. Anderson, A. L. Cudero, and J. Palma, "Effective modified carbon nanofibers as electrodes for capacitive deionization process", Electrochim. Acta, 55, 3845 (2010).   DOI
9 S. Porada, L. Weinstein, R. Dash, A. Van der Wal, M. Bryjak, Y. Gogotsi, and P. M. Biesheuvel, "Water desalination using capacitive deionization with microporous carbon electrodes", ACS Appl. Mater. Interfaces, 4, 1194 (2012).   DOI
10 P. M. Biesheuvel and A. van der Wal, "Membrane capacitive deionization", J. Membr. Sci., 346, 256 (2010).   DOI
11 Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, and L. Pan, "Review on carbon-based composite materials for capacitive deionization", RSC Adv., 5, 15205 (2015).   DOI
12 R. Zhao, P. M. Biesheuvel, and A. van der Wal, "Energy consumption and constant current operation in membrane capacitive deionization", Energy Environ. Sci., 5, 9520 (2010).
13 C. Wang, H. Song, Q. Zhang, B. Wang, and A. Li, "Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration", Desalination, 365, 407 (2015).   DOI
14 Y.-J. Kim, J. Hur, W. Bae, and J.-H. Choi, "Desalination of brackish water containing oil compound by capacitive deionization process", Desalination, 253, 119 (2010).   DOI
15 P. M. Biesheuvel, R. Zhao, S. Porada, and A. van der Wal, "Theory of membrane capacitive deionization including the effect of the electrode pore space", J. Colloid Interface Sci., 350, 239 (2011).
16 H. Strathmann, "Ion-exchange Membrane Separation Processes", Elsevier, Amsterdam (2004).
17 D. H. Kim, J. S. Park, and M. S. Kang, "Controlling water splitting characteristics of anion-exchange membranes by coating imidazolium polymer", Membr. J., 25, 152 (2015).   DOI
18 J. H. Yeo and J. H. Choi, "Enhancement of selective removal of nitrate ions from a mixture of anions using a carbon electrode coated with ion-exchange resin powder", Appl. Chem. Eng., 24, 49 (2013).
19 S. W. Chen, J. H. Jun, J. W. Rhim, and S. Y. Nam, "Studies on the preparation of the poly (vinyl alcohol) ion exchange membranes for direct methanol fuel cell", Membr. J., 13, 199 (2003).
20 H. Strathmann, "Electrodialysis, a mature technology with a multitude of new applications", Desalination, 264, 268 (2010).   DOI
21 C. W. Lin, Y. F. Huang, and A. M. Kannan, "Cross-linked poly(vinyl alcohol) and poly(styrene sulfonic acid-co-maleic anhydride)-based semi-interpenetrating network as proton-conducting membranes for direct methanol fuel cells", J. Power Sourecs, 171, 340 (2007).   DOI
22 Y. S. Jeon and J. W. Rhim, "Performance study on membrane capacitive deionization (MCDI) processes using the composite carbon electrodes coated by cation and anion exchange polymers based on PVA", Polym. Korea, 41, 352 (2017).   DOI