Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.9.3348

Preparation and Adsorption Properties of PA6/PSMA-OA Molecularly Imprinted Composite Membranes in Supercritical CO2  

Zhang, Qing (CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China)
Zhang, Xingyuan (CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China)
Zhang, Wencheng (Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology)
Pan, Jian (Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology)
Liu, Ling (Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology)
Zhang, Haitao (Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology)
Zhao, Dong (CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China)
Li, Zhi (CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China)
Publication Information
Abstract
Oleanolic acid (OA) as template molecule, polyamide-6 (PA6) as basement membrane and poly(styrene-comaleic acid) (PSMA) were used to prepare PA6/PSMA-OA molecularly imprinted composite membranes by phase inversion method in supercritical $CO_2$ ($ScCO_2$). The template molecule (OA), [poly(styrene-co-maleic anhydride) (PSMAH), PSMA, molecularly imprinted membranes (MIMs) imprinting OA and MIMs after elution were all characterized by Fourier transform infrared spectroscopy (FTIR). The conditions that were the mass ratio between PSMA and OA from 3:1 to 8:1, temperature of $ScCO_2$ from $35^{\circ}C$ to $50^{\circ}C$ and pressure of $ScCO_2$ 12 MPa to 17 MPa were studied. It was obtained the largest adsorption rate and purity of OA after adsorption of the resultant MIMs, 50.41% and 96.15% respectively. After using PA6 film and non-woven fabrics as basement membrane respectively, it was found that smaller aperture of PA6 was used as basement membrane, a higher adsorption rate and a higher purity of OA after adsorption of the MIMs were obtained, and so were the stability and reproducibility of the resultant MIMs. After template molecules being removed, the MIMs had effective selectivity hydrogen bonding to separately bind in the binary components to the template molecules-oleanolic acid.
Keywords
Oleanolic acid; Supercritical carbon dioxide; Phase inversion; Molecularly imprinted composite membrane; Binding experiment;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Arora, K.-A.; Lesser, A.-J.; McCarthy, T.-J. Macromolecules 1999, 32, 2562-2568.   DOI   ScienceOn
2 Wang, H.-Y.; Xia, S.-L.; Sun, H.; Liu, Y.-K.; Cao, S.-K.; Kobayashi, T. J. Chromatogr. B 2004, 804, 127-134.   DOI   ScienceOn
3 Zhang, Q.; Kusunoki, T.; Xu, Q.; Wang, H.; Kobayashi, T. Anal. Bioanal. Chem. 2007, 388, 665-673.   DOI
4 Kobayashi, T.; Leong, S.-S.; Zhang, Q. J. Appl. Polym. Sci. 2008, 108, 757-768.   DOI   ScienceOn
5 Herodez, S.-S.; Hadolin, M.; Skerget, M.; Knez, Z. Food Chem. 2003, 80, 275-282.   DOI   ScienceOn
6 Liu, H.; Shi, Y.; Wang, D. Yang, G.; Yu, A.; Zhang, H. J. Pharm. Biomed. Anal. 2003, 32, 479-485.   DOI   ScienceOn
7 Trotta, F.; Drioli, E.; Baggiani, C.; Lacopo, D. J. Membr. Sci. 2002, 201, 77-84.   DOI   ScienceOn
8 Kobayashi, T.; Fukaya, T.; Abe, M.; Fujii, N. Langmuir 2002, 18, 2866-2872.   DOI   ScienceOn
9 Screenivasulu Reddy, P.; Kobayashi, T.; Abe, M.; Fujii, N. Eur. Polym. J. 2002, 38, 521-529.   DOI   ScienceOn
10 Ramamoorthy, M.; Ulbricht, M. J. Membr. Sci. 2003, 217, 207- 214.   DOI   ScienceOn
11 Hilal, N.; Kochkodan, V. J. Membr. Sci. 2003, 213, 97-113.   DOI   ScienceOn
12 Piletsky, S.-A.; Matuschewski, H.; Schedler, U.; Wilpert, A.; Piletska, E.-V.; Thiele, T.-A.; Ulbricht, M. Macromolecules 2000, 33, 3092-3098.   DOI   ScienceOn
13 Sergeyeva, T.-A.; Matuschewski, H.; Piletsky, S.-A.; Bendig, J.; Schedler, U.; Ulbricht, M. J. Chromatogr. A 2001, 907, 89-99.   DOI   ScienceOn
14 Mathew-Krotz, J.; Shea, K. J. J. Am. Chem. Soc. 1996, 118, 8154- 8155.   DOI   ScienceOn
15 Sergeyeva, T.-A.; Piletska, O.-V.; Piletsky, S.-A.; Sergeeva, L.- M.; Brovko, O.-O.; El'ska, G.-V. Mater. Sci. Eng., C 2008, 28, 1472-1479.   DOI   ScienceOn
16 Berens, A.-R.; Huvard, G.-S.; Korsmeyer, R.-W.; Kunig, F.-W. J. Appl. Polym. Sci. 1992, 46, 231-242.   DOI
17 Watkins, J.-J.; McCarthy, T.-J. Macromolecules 1994, 27, 4845- 4847.   DOI   ScienceOn
18 von Schnitzler, J.; Eggers, R. J. Supercrit. Fluids 1999, 16, 81-92.   DOI   ScienceOn
19 Sarrade, S.; Guizard, C.; Rios, G.-M. Sep. Purif. Technol. 2003, 32, 57-63.   DOI   ScienceOn
20 Luna-Barcenas, G.; Kanakia, S.-K.; Sanchez, I.-C.; Johnston, K.- P. Polymer 1995, 36, 3173-3182.   DOI   ScienceOn
21 Kung, E.; Lesser, A.-J.; McCarthy, T.-J. Macromolecules 1998, 31, 4160-4169.   DOI   ScienceOn