• Title/Summary/Keyword: planar pattern image

Search Result 16, Processing Time 0.025 seconds

A Novel Measuring Method of In-plane Position of Contact-Free Planar Actuator Using Binary Grid Pattern Image (이진 격자 패턴 이미지를 이용한 비접촉식 평면 구동기의 면내 위치(x, y, $\theta$) 측정 방법)

  • 정광석;정광호;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.120-127
    • /
    • 2003
  • A novel three degrees of freedom sensing method utilizing binary grid pattern image and vision camera is presented. The binary grid pattern image is designed by Pseudo-Random Binary Arrays and referenced to encode in-plane position of a moving stage of the contact-free planar actuator. First, the yaw motion of the stage is detected using fast image processing and then the other planar positions, x and y, are decoded with a sequence of images. This method can be applied to the system that needs feedback of in-plane position, with advantages of a good accuracy and high resolution comparable with the encoder, a relatively compact structure, no friction, and a low cost. In this paper, all the procedures of the above sensing mechanism are described in detail, including simulation and experiment results.

Planar Texture Replacement in Spherical Images using Cubemap (큐브맵을 사용한 구면 영상에서의 평면 텍스처 대치)

  • Park, Jeong-Hyeon;Park, Jong-Seung
    • Journal of Korea Game Society
    • /
    • v.17 no.6
    • /
    • pp.153-164
    • /
    • 2017
  • In spherical panoramic images, SURF, a feature description method for planar patterns, does not work correctly due to heavy spherical distortion. Since a plane pattern is distorted in a spherical image, the pattern search and replacement in a spherical panoramic image should be treated differently from the case of the planar image. This paper proposes a planar texture replacement method, which transforms a spherical panoramic image into a cubemap panoramic image, searches a pattern using SURF, replaces a plane pattern, and then converts it into a spherical panoramic image.

Determining 3D-shape of specular objects by using an encoded grid pattern light source

  • Ye, Xiongying;Fujimura, Sadao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1758-1763
    • /
    • 1991
  • This paper describes a new method to determine the 3D-shape of objects consisting of specular planar surfaces. This method exploits a light source which is made of a diffuse plane with a grid pattern encoded in an M-sequence and uses a single image of the light source reflected by the objects to acquiring orientations and positions of the surfaces of the objects. When grid lines of the light source are reflected by a specular planar surface and perspectively projected on an image plane, a set of lines vanishing at a point are obtained on the image plane. The orientation of the specular planar surface is determined by using the vanishing point, and the position is determined by using the correspondence between lines on the image and lines on the light source, which is obtained by employing a characteristic regularity of the M-sequence. Before the vanishing points are calculated, the lines on the image are classified and correlated with the surfaces of objects by using slopes and positions of the lines and the regularity of the M-sequence. This method requires only a single image.

  • PDF

3D Reconstruction Using the Planar Homograpy (평면 호모그래피를 이용한 3차원 재구성)

  • Yoon Yong-In;Ohk Hyung-Soo;Choi Jong-Soo;Oh Jeong-Su
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.381-390
    • /
    • 2006
  • This paper proposes a new technque of the camera calibration to be computed a homography between the planar patterns taken by a single image to be located at the three planar patterns from uncalibrated images. It is essential to calibrate a camera for 3-dimensional reconstruction from uncalibrated image. Since the proposed method should be computed from the homography among the three planar patterns from a single image, it is implemented to more easily and simply to recover 3D reconstruction of an object than the conventional. Experimental results show the performances of the proposed method are the better than the conventional. We demonstrate examples of recovering 3D reconstruction using the proposed algorithm from uncalibrated images.

Estimating Geometric Transformation of Planar Pattern in Spherical Panoramic Image (구면 파노라마 영상에서의 평면 패턴의 기하 변환 추정)

  • Kim, Bosung;Park, Jong-Seung
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1185-1194
    • /
    • 2015
  • A spherical panoramic image does not conform to the pin-hole camera model, and, hence, it is not possible to utilize previous techniques consisting of plane-to-plane transformation. In this paper, we propose a new method to estimate the planar geometric transformation between the planar image and a spherical panoramic image. Our proposed method estimates the transformation parameters for latitude, longitude, rotation and scaling factors when the matching pairs between a spherical panoramic image and a planar image are given. A planar image is projected into a spherical panoramic image through two steps of nonlinear coordinate transformations, which makes it difficult to compute the geometric transformation. The advantage of using our method is that we can uncover each of the implicit factors as well as the overall transformation. The experiment results show that our proposed method can achieve estimation errors of around 1% and is not affected by deformation factors, such as the latitude and rotation.

The Optimal Bispectral Feature Vectors and the Fuzzy Classifier for 2D Shape Classification

  • Youngwoon Woo;Soowhan Han;Park, Choong-Shik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.421-427
    • /
    • 2001
  • In this paper, a method for selection of the optimal feature vectors is proposed for the classification of closed 2D shapes using the bispectrum of a contour sequence. The bispectrum based on third order cumulants is applied to the contour sequences of the images to extract feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images, but there is no certain criterion on the selection of the feature vectors for optimal classification of closed 2D images. In this paper, a new method for selecting the optimal bispectral feature vectors based on the variances of the feature vectors. The experimental results are presented using eight different shapes of aircraft images, the feature vectors of the bispectrum from five to fifteen and an weighted mean fuzzy classifier.

  • PDF

Mask Modeling of a 3D Non-planar Parent Material for Micro-abrasive Jet Machining (미세입자 분사가공을 위한 3 차원 임의형상 모재용 마스크 모델링)

  • Kim, Ho-Chan;Lee, In-Hwan;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.91-97
    • /
    • 2010
  • Micro-abrasive Jet Machining is one of the new technology which enables micro-scale machining on the surface of high brittle materials. In this technology it is very important to fabricate a mask that prevents excessive abrasives not to machine un-intend surface. Our previous work introduced the micro-stereolithography technology for the mask fabrication. And is good to not only planar material but also for non-planar materials. But the technology requires a 3 dimensional mask CAD model which is perfectly matched with the surface topology of parent material as an input. Therefore there is strong need to develop an automated modeling technology which produce adequate 3D mask CAD model in fast and simple way. This paper introduces a fast and simple mask modeling algorithm which represents geometry of models in voxel. Input of the modeling system is 2D pattern image, 3D CAD model of parent material and machining parameters for Micro-abrasive Jet Machining. And the output is CAD model of 3D mask which reflects machining parameters and geometry of the parent material. Finally the suggested algorithm is implemented as software and verified by some test cases.

Measuring Methods for Two-dimensional Position Referring to the Target Pattern (참조패턴 기반의 2차원 변위 측정 방법론)

  • Jung, Kwang Suk;Lee, Sang Heon;Park, Sung-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.77-84
    • /
    • 2013
  • In this paper, we review two-dimensional measuring methods referring to target patterns. The patterns consist of two linearly-repeated patterns or is designed repeatedly in two-dimension. The repeated properties are reflectivity, refractivity, air-gapping distance, capacitance, magnetic reluctance, electrical resistance and sloping gradient, etc. However, the optical methods are generally used for high speed processing and density, and their encoding principles are treated here. In case of two-dimensional pattern, as there is not inherently error between single units encoding the pattern except for the metrology frame errors, the end-effector position of an object accompanying the pattern can be measured with respect of the global frame without via error. Therefore, it is regarded as a substitute for laser interferometer with severe environmental constraints and has been applied to the high-accurate planar actuator.

Assessment of Vascularization within Hydroxyapatite Ocular Implant by Bone Scintigraphy: Comparative Analysis of Planar and SPECT Imaging (Hydroxyapatite 안구보충물삽입술 후 골신티그라피를 이용한 섬유혈관증식 평가: 평면영상과 SPECT 영상에서의 비교)

  • Lim, Seok-Tae;Sohn, Myung-Hee;Park, Soon-Ah
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.6
    • /
    • pp.475-483
    • /
    • 1999
  • Purpose: Complete fibrovascular ingrowth within the hydroxyapatite ocular implant is necessary for peg drilling which is performed to Prevent infection and to provide motility to the ocular prosthesis. We compared planar bone scintigraphy and SPECT for the evaluation of the vascularization within hydroxyapatite ocular implants. Materials and Methods: Seventeen patients (M:F: 12:5, mean age; $50.4{\pm}17.5$ years) who had received a coralline hydroxyapatite ocular implant after enucleation surgery were enrolled. Patients underwent Tc-99m MDP planar bone and SPECT imaging by dual head gamma camera after their implant surgery (interval: $197{\pm}81$ days). Uptake on planar and SPECT images was graded visually as less than (grade 1), equal to (grade 2), and greater than (grade 3) nasal bridge activity. Quantitative ratio of implanted to non-implanted intraorbital activity was also measured. Vascularization within hydroxyapatite implants was confirmed by slit lamp examination and ocular movement. Results: All but three patients were considered to be vascularized within hydroxyapatite implants. In visual analysis of planar image and SPECT, grade 1 was noted in 9/18 (50%) and 6/18 (33%), respectively. Grade 2 pattern was 7/18 (39%) and 4/18 (22%), and grade 3 pattern was 2/18 (11%) and 8/18 (44%) respectively. When grade 2 or 3 was considered to be positive for vascularization, the sensitivity of planar and SPECT imaging were 60% (9/15) and 80% (12/15), respectively. In 3 patients with incomplete vascularization, both planar and SPECT showed grade 1 uptake The orbital activity ratios on planar imaging were not significantly different between complete and incomplete vascularization ($1.96{\pm}0.87$ vs $1.17{\pm}0.08$, p>0.05), however, it was significantly higher on SPECT in patients with complete vascularization ($8.44{\pm}5.45$ vs $2.20{\pm}0.87$, p<0.05). Conclusion: In the assessment of fibrovascular ingrowth within ocular implants by Tc-99m MDP bone scintigraphy, SPECT image appears to be more effective than planar scintigraphy.

  • PDF

Development of Fashion Shoes with Korean Image as Cultural Goods by Using Korea Traditional Shoes (한국 전통신발을 이용한 한국적 이미지 패션신발 문화상품 개발)

  • Park, Hea-Ryung;Cha, Eun-Jin
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.11 no.2
    • /
    • pp.99-115
    • /
    • 2009
  • Recently, the development of design of cultural goods is focusing on excessively workmanship-oriented craft items. However, an advanced strategy that is practical and develops market-oriented goods in the world needs to be suggested from now on and the selection of goods item aimed to world market is very urgent. Therefore, the purpose of this study was to design practical and worldwide market-oriented shoes with Korean traditional image as a cultural goods. As software tools, 2D Adobe Illustrator Adobe Photoshop and 3D MAX 8.0 Photoshop CS were used to design the shoes. From 8 types of pattern design to which Koran traditional pattern was applied and 7 types of shoe design to which Korean traditional shoes were applied, 60 types of planar shoes design coating developed pattern designs were made. Furthermore, 3D design of cultural goods of shoe made possible to observe it three-dimensionally and accurately from the top, the front and the side respectively. Finally, 43 types of cultural goods of shoe to which Korean traditional shoes were applied were designed successfully according to traditional patterns and colors. The systematic database was established based on the developed pattern design of the shoes and might make the best use of the development of related design of cultural goods. Although there were partly some limitations in the aspects of design and material development of Korean traditional shoes, this study would help the economics of shoe industry in Korea producing high value-added products.

  • PDF