• Title/Summary/Keyword: piezoresistive

Search Result 146, Processing Time 0.026 seconds

Design of BiCMOS Signal Conditioning Circuitry for Piezoresistive Pressure Sensor (압저항형 압력센서를 위한 BiCMOS 신호처리회로의 설계)

  • Lee, Bo-Na;Lee, Moon-Key
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.25-34
    • /
    • 1996
  • In this paper, we have designed signal conditioning circuitry for piezoresistive pressure sensor. Signal conditioning circuitry consists of voltage reference circuit for sensor driving voltage and instrument amplifier for sensor signal amplification. Signal conditioning circuitry is simulated using HSPICE in a single poly double metal $1.5\;{\mu}m$ BiCMOS technology. Simulation results of band-gap reference circuit showed that temperature coefficient of $21\;ppm/^{\circ}C$ at the temperature range of $0\;{\sim}\;70^{\circ}C$ and PSRR of 80 dB. Simulation results of BiCMOS amplifier showed that dc voltage gain, offset voltage, CMRR, CMR and PSRR are outperformed to CMOS and Bipolar, but power dissipation and noise voltage were more improved in CMOS than BiCMOS and Bipolar. Designed signal conditioning circuitry showed high input impedance, low offset and good CMRR, therefore, it is possible to apply sensor and instrument signal conditioning circuitry.

  • PDF

Fabrication and Characteristics of Piezoresistive Flow Sensor with Microbeam Structures (미소 빔 구조를 가진 압저항형 유체센서의 제작 및 특성)

  • Park, Chang-Hyun;Kang, Sung-Gyu;Yu, In-Sik;Sim, Jun-Hwan;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.400-406
    • /
    • 1999
  • Piezoresistive flow sensors with four different types of microbeam structures were fabricated using (100), n/$n^+$/n three-layer silicon wafer and their characteristics were investigated. Piezoresistors were formed through boron diffusion and its values were about $1\;k{\Omega}$. Three-dimensional silicon microbeams were constructed by porous silicon micromachining and curled microbeams were fabricated by the difference in the thermal expansion coefficient between silicon and metal. The output response of the fabricated sensor was evaluated through half- bridge. The output voltage increased with increasing length of microbeam at the same flow velocity, while the detectable measurement range extended with decreasing length of microbeam. The output voltage of the fabricated sensors were increased with quotient of 3.2 of the flow rate since the stress of the beam versus the gas flow showed non-linear characteristics.

  • PDF

The Improvement in Offset and Temperature Drift on Silicon Piezoresistive Pressure Sensor (실리콘 압저항 압력센서의 오프셋 및 온도 드리프트 개선)

  • Kim, Jae-Mun;Lee, Young-Tae;Seo, Hee-Don;Choi, Se-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.17-24
    • /
    • 1996
  • In order to reduce the offset and its temperature drift by the different properties of the piezoresistors and the residual stress of the piezoresistive pressure sensor, a double Wheatstone-bridge pressure sensor was studied. Because the compensation bridge was arranged near by the pressure sensitive bridge, which have the similar offset component, reduction of the offset and its temperature drift was realized by the mathematical subtraction of the output of two bridges. It was configured the compensation of the offset and its temperature drift. By this compensation method, the offset and its temperature drift were reduced approximately 95% respectively. The sensitivity of the fabricated pressure sensor was $11.7\;mV/Vkg/cm^{-2}$ for $0.9\;kgfcm^{-2}$ full-scale pressure range.

  • PDF

Rosette Strain Sensors Based on Stretchable Metal Nanowire Piezoresistive Electrodes (신축성 금속 나노선 압저항 전극 기반 로젯 스트레인 센서)

  • Kim, Kang-Hyun;Cha, Jae-Gyeong;Kim, Jong-Man
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.835-843
    • /
    • 2018
  • In this work, we report a delta rosette strain sensor based on highly stretchable silver nanowire (AgNW) percolation piezoresistors. The proposed rosette strain sensors were easily prepared by a facile two-step fabrication route. First, three identical AgNW piezoresistive electrodes were patterned in a simple and precise manner on a donor film using a solution-processed drop-coating of the AgNWs in conjunction with a tape-type shadow mask. The patterned AgNW electrodes were then entirely transferred to an elastomeric substrate while embedding them in the polymer matrix. The fabricated stretchable AgNW piezoresistors could be operated at up to 20% strain without electrical or mechanical failure, showing a maximum gauge factor as high as 5.3, low hysteresis, and high linearity ($r^2{\approx}0.996$). Moreover, the sensor responses were also found to be highly stable and reversible even under repeated strain loading/unloading for up to 1000 cycles at a maximum tensile strain of 20%, mainly due to the mechanical stability of the AgNW/elastomer composites. In addition, both the magnitude and direction of the principal strain could be precisely characterized by configuring three identical AgNW piezoresistors in a delta rosette form, representing the potential for employing the devices as a multidimensional strain sensor in various practical applications.

A review of 3D printing technology for piezoresistive strain/loadcell sensors (3D 프린팅 센서 연구 동향 소개-전왜성 변형/로드셀 센서 중심으로)

  • Cho, Jeong Hun;Moon, Raymond Hyun Woo;Kim, Sung Yong;Choi, Baek Gyu;Oh, Gwang Won;Joung, Kwan Young;Kang, In Pil
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.388-394
    • /
    • 2021
  • The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3D printing also can produce the sensor using various materials and design its sensing structure with freely optimized shapes. Hence, 3D printing is expected to be a new technology that can produce sensors on-site and respond to on-demand demand by combining it with open platform technology. Therefore, this paper reviews three standard 3D printing technologies, such as Fused Deposition Modeling (FDM), Direct Ink Writing (DIW), and Digital Light Processing (DLP), which can apply to the sensor fabrication process. The review focuses on strain/load sensors having both sensing material features and structural features as well. NCPC (Nano Carbon Piezoresistive Composite) is also introduced as a promising 3D material due to its favorable sensing characteristics.

An Integrated Sensor for Pressure, Temperature, and Relative Humidity Based on MEMS Technology

  • Won Jong-Hwa;Choa Sung-Hoon;Yulong Zhao
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.505-512
    • /
    • 2006
  • This paper presents an integrated multifunctional sensor based on MEMS technology, which can be used or embedded in mobile devices for environmental monitoring. An absolute pressure sensor, a temperature sensor and a humidity sensor are integrated in one silicon chip of which the size is $5mm\times5mm$. The pressure sensor uses a bulk-micromachined diaphragm structure with the piezoresistors. For temperature sensing, a silicon temperature sensor based on the spreading-resistance principle is designed and fabricated. The humidity sensor is a capacitive humidity sensor which has the polyimide film and interdigitated capacitance electrodes. The different piezoresistive orientation is used for the pressure and temperature sensor to avoid the interference between sensors. Each sensor shows good sensor characteristics except for the humidity sensor. However, the linearity and hysteresis of the humidity sensor can be improved by selecting the proper polymer materials and structures.

A micromachined cantilever for chemically sensitive scanning force microscope applications (화학적 성분 분석능력을 가진 원자 현미경의 제작)

  • Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • This paper describes a novel concept of a chemically sensitive scanning force microscope (CS-SFM). It consists of the conventional SFM and the time-of-flight mass spectrometer (TOF-MS). A switchable cantilever (SC) fabricated by the micromachining technology combines each advantage of two completely different systems, SFM and TOF-MS. The CS-SFM offers to produce both images of topography and chemical information simultaneously. First we employed a rotatable tip holder based on 4 piezotube actuators for demonstration of the possibility of the CS-SFM concept. Second the CS-SFM concept is optimized with the micromachining technology. The micromachined SC with an integrated bimorph actuator and a piezoresistive strain sensor provides a reasonable switching speed of ${\sim}10$ ms which is very attractive for the CS-SFM application. The SC is currently being integrated in an ultra-high-vacuum system to perform various experiments.

Fabrication of a silicon pressure sensor for measuring low pressure using ICP-RIE (ICP-RIE를 이용한 저압용 실리콘 압력센서 제작)

  • Lee, Young-Tae;Takao, Hidekuni;Ishida, Makoto
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • In this paper, we fabricated piezoresistive pressure sensor with dry etching technology which used ICP-RIE (inductively coupled plasma reactive ion etching) and etching delay technology which used SOI (silicon-on-insulator). Structure of the fabricated pressure sensor shows a square diaphragm connected to a frame which was vertically fabricated by dry etching process and a single-element four-terminal gauge arranged at diaphragm edge. Sensitivity of the fabricated sensor was about 3.5 mV/V kPa at 1 kPa full-scale. Measurable resolution of the sensor was not exceeding 20 Pa. The nonlinearity of the fabricated pressure sensor was less than 0.5 %F.S.O. at 1 kPa full-scale.

The Study on Piezoresistance Change Ratio of Cantilever type Acceleration Sensor (압저항 가속도 센서의 압저항 변화율 분포도에 관한 연구)

  • 심재준;한근조;한동섭;이성욱;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.186-189
    • /
    • 2004
  • Sensor used by semiconductor process produced an MAP sensor and applied to several industry. Among those sensors divided as transducer which convert physical quantity into electrical value, piezoresistive type sensor has been studied for the properties and sensitivity of piezoresistor. In this paper, the variation of seismic mass which have been functioned as actuator moving the cantilever beam analyzed the effect on distribution of resistance change ratio and supposed the optimal shape and position of piezoresistor. The resulting are following; According to the increment of seismic mass size, the value of resistance change ratio decreased caused by improve the stiffness. Y directional piezoresistor is formed in spot of 100 m apart from cantilever edge and length of that is 800$\mu$m. To increase the sensitivity, piezoresistor is made as n-type and x-direction.

  • PDF

Characteristics of Chromiun Nitride Thin-film Strain Guges (크로질화박막 스트레인 게이지의 특성)

  • Chung, Gwiy-Sang;Kim, Gil-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.134-138
    • /
    • 2000
  • The physical, electrical and piezoresitive characteristics of CrN(chromiun nitride) thin-films on silicon substrates have been investigated for use as strain gauges. The thin-film depositions have been carried out by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-(5~25 %)$N_2$). The deposited CrN thin-films with thickness of $3500{\AA}$nd annealing conditions($300^{\circ}C$, 48 hr) in Ar-10 % $N_2$ deposition atmosphere have been selected as the ideal piezoresistive material for the strain gauges. Under optimum conditions, the CrN thin-films for the strain gauges is obtained a high electrical resistivity, $\rho=1147.65\;{\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR=-186 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF=11.17.

  • PDF