DOI QR코드

DOI QR Code

Rosette Strain Sensors Based on Stretchable Metal Nanowire Piezoresistive Electrodes

신축성 금속 나노선 압저항 전극 기반 로젯 스트레인 센서

  • Kim, Kang-Hyun (Department of Nano Fusion Technology, Pusan National University) ;
  • Cha, Jae-Gyeong (Department of Nanomechatronics Engineering, Pusan National University) ;
  • Kim, Jong-Man (Department of Nano Fusion Technology, Pusan National University)
  • 김강현 (부산대학교나노융합기술학과) ;
  • 차재경 (부산대학교나노메카트로닉스공학과) ;
  • 김종만 (부산대학교나노융합기술학과)
  • Received : 2018.08.22
  • Accepted : 2018.09.08
  • Published : 2018.11.05

Abstract

In this work, we report a delta rosette strain sensor based on highly stretchable silver nanowire (AgNW) percolation piezoresistors. The proposed rosette strain sensors were easily prepared by a facile two-step fabrication route. First, three identical AgNW piezoresistive electrodes were patterned in a simple and precise manner on a donor film using a solution-processed drop-coating of the AgNWs in conjunction with a tape-type shadow mask. The patterned AgNW electrodes were then entirely transferred to an elastomeric substrate while embedding them in the polymer matrix. The fabricated stretchable AgNW piezoresistors could be operated at up to 20% strain without electrical or mechanical failure, showing a maximum gauge factor as high as 5.3, low hysteresis, and high linearity ($r^2{\approx}0.996$). Moreover, the sensor responses were also found to be highly stable and reversible even under repeated strain loading/unloading for up to 1000 cycles at a maximum tensile strain of 20%, mainly due to the mechanical stability of the AgNW/elastomer composites. In addition, both the magnitude and direction of the principal strain could be precisely characterized by configuring three identical AgNW piezoresistors in a delta rosette form, representing the potential for employing the devices as a multidimensional strain sensor in various practical applications.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. M. Amjadi, K.-U. Kyung, I. Park, and M. Sitti, Adv. Funct. Mater. 26, 1678 (2016). https://doi.org/10.1002/adfm.201504755
  2. C.-J. Lee, K. H. Park, C. J. Han, M. S. Oh, B. You, Y.-S. Kim, and J.-W. Kim, Sci. Rep. 7, 7959 (2017). https://doi.org/10.1038/s41598-017-08484-y
  3. J. H. Cho, S.-H. Ha, and J.-M. Kim, Nanotechnology 29, 155501 (2018). https://doi.org/10.1088/1361-6528/aaabfe
  4. S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, Adv. Electron. Mater. 1, 1400063 (2015). https://doi.org/10.1002/aelm.201400063
  5. J. Lee, S. Kim, J. Lee, D. Yang, B. C. Park, S. Ryu, and I. Park, Nanoscale 6, 11932 (2014). https://doi.org/10.1039/C4NR03295K
  6. I. You, B. Kim, J. Park, K. Koh, S. Shin, S. Jung, and U. Jeong, Adv. Mater. 28, 6359 (2016). https://doi.org/10.1002/adma.201600720
  7. X. Wang, J. Li, H. Song, H. Huang, and J. Gou, ACS Appl. Mater. Interfaces 10, 7371 (2018). https://doi.org/10.1021/acsami.7b17766
  8. J. Zhou, H. Yu, X. Xu, F. Han, and G. Lubineau, ACS Appl. Mater. Interfaces 9, 4835 (2017). https://doi.org/10.1021/acsami.6b15195
  9. Y. Yu, Y. Luo, A. Guo, L. Yan, Y. Wu, K. Jiang, Q. Li, S. Fan, and J. Wang, Nanoscale 9, 6716 (2017). https://doi.org/10.1039/C6NR09961K
  10. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, Nat. Nanotechnol. 6, 296 (2011). https://doi.org/10.1038/nnano.2011.36
  11. S. Ryu, P. Lee, J. B. Chou, R. Xu, R. Zhao, A. J. Hart, and S.-G. Kim, ACS Nano 9, 5929 (2015). https://doi.org/10.1021/acsnano.5b00599
  12. J.-H. Kong, N.-S. Jang, S.-H. Kim, and J.-M. Kim, Carbon 77, 199 (2014). https://doi.org/10.1016/j.carbon.2014.05.022
  13. J. Shintake, E. Piskarev, S. H. Jeong, and D. Floreano, Adv. Mater. Technol. 3, 1700284 (2018). https://doi.org/10.1002/admt.201700284
  14. S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim, and J.-H. Ahn, Carbon 51, 236 (2013). https://doi.org/10.1016/j.carbon.2012.08.048
  15. X. Li, T. Yang, Y. Yang, J. Zhu, L. Li, F. E. Alam, X. Li, K. Wang, H. Cheng, C.-T. Lin, Y. Fang, and H. Zhu, Adv. Funct. Mater. 26, 1322 (2016). https://doi.org/10.1002/adfm.201504717
  16. X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, A. Cao, Z. Li, Y. Cheng, Q. Zheng, R. S. Ruoff, and H. Zhu, Sci. Rep. 2, 870 (2012). https://doi.org/10.1038/srep00870
  17. S. W. Lee, J. J. Park, B. H. Park, S. C. Mun, Y. T. Park, K. Liao, T. S. Seo, W. J. Hyun, and O O. Park, ACS Appl. Mater. Interfaces 9, 11176 (2017). https://doi.org/10.1021/acsami.7b01551
  18. S. Chen, Y. Wei, X. Yuan, Y. Lin, and L. Liu, J. Mater. Chem. C 4, 4304 (2016). https://doi.org/10.1039/C6TC00300A
  19. X. Guo, Y. Huang, Y. Zhao, L. Mao, L. Gao, W. Pan, Y. Zhang, and P. Liu, Smart Mater. Struct. 26, 095017 (2017). https://doi.org/10.1088/1361-665X/aa79c3
  20. S. Duan, Z. Wang, L. Zhang, J. Liu, and C. Li, Adv. Mater. Technol. 3, 1800020 (2018). https://doi.org/10.1002/admt.201800020
  21. P. T. Hoang, N. Salazar, T. N. Porkka, K. Joshi, T. Liu, T. J. Dickens, and Z. Yu, Nanoscale Res. Lett. 11, 422 (2016). https://doi.org/10.1186/s11671-016-1626-z
  22. S. Shengbo, L. Lihua, J. Aoqun, D. Qianqian, J. Jianlong, Z. Qiang, and Z. Wendong, Nanotechnology 29, 255202 (2018). https://doi.org/10.1088/1361-6528/aabbba
  23. K. E. Korte, S. E. Skrabalak, and Y. Xia, J. Mater. Chem. 18, 437 (2008). https://doi.org/10.1039/B714072J