Browse > Article
http://dx.doi.org/10.3365/KJMM.2018.56.11.835

Rosette Strain Sensors Based on Stretchable Metal Nanowire Piezoresistive Electrodes  

Kim, Kang-Hyun (Department of Nano Fusion Technology, Pusan National University)
Cha, Jae-Gyeong (Department of Nanomechatronics Engineering, Pusan National University)
Kim, Jong-Man (Department of Nano Fusion Technology, Pusan National University)
Publication Information
Korean Journal of Metals and Materials / v.56, no.11, 2018 , pp. 835-843 More about this Journal
Abstract
In this work, we report a delta rosette strain sensor based on highly stretchable silver nanowire (AgNW) percolation piezoresistors. The proposed rosette strain sensors were easily prepared by a facile two-step fabrication route. First, three identical AgNW piezoresistive electrodes were patterned in a simple and precise manner on a donor film using a solution-processed drop-coating of the AgNWs in conjunction with a tape-type shadow mask. The patterned AgNW electrodes were then entirely transferred to an elastomeric substrate while embedding them in the polymer matrix. The fabricated stretchable AgNW piezoresistors could be operated at up to 20% strain without electrical or mechanical failure, showing a maximum gauge factor as high as 5.3, low hysteresis, and high linearity ($r^2{\approx}0.996$). Moreover, the sensor responses were also found to be highly stable and reversible even under repeated strain loading/unloading for up to 1000 cycles at a maximum tensile strain of 20%, mainly due to the mechanical stability of the AgNW/elastomer composites. In addition, both the magnitude and direction of the principal strain could be precisely characterized by configuring three identical AgNW piezoresistors in a delta rosette form, representing the potential for employing the devices as a multidimensional strain sensor in various practical applications.
Keywords
rosette strain sensor; siliver nanowire; stretchable piezoresistor; drop-coating; tape-type shadow mask; solution process;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Amjadi, K.-U. Kyung, I. Park, and M. Sitti, Adv. Funct. Mater. 26, 1678 (2016).   DOI
2 C.-J. Lee, K. H. Park, C. J. Han, M. S. Oh, B. You, Y.-S. Kim, and J.-W. Kim, Sci. Rep. 7, 7959 (2017).   DOI
3 J. H. Cho, S.-H. Ha, and J.-M. Kim, Nanotechnology 29, 155501 (2018).   DOI
4 S. Gong, D. T. H. Lai, B. Su, K. J. Si, Z. Ma, L. W. Yap, P. Guo, and W. Cheng, Adv. Electron. Mater. 1, 1400063 (2015).   DOI
5 J. Lee, S. Kim, J. Lee, D. Yang, B. C. Park, S. Ryu, and I. Park, Nanoscale 6, 11932 (2014).   DOI
6 I. You, B. Kim, J. Park, K. Koh, S. Shin, S. Jung, and U. Jeong, Adv. Mater. 28, 6359 (2016).   DOI
7 X. Wang, J. Li, H. Song, H. Huang, and J. Gou, ACS Appl. Mater. Interfaces 10, 7371 (2018).   DOI
8 Y. Yu, Y. Luo, A. Guo, L. Yan, Y. Wu, K. Jiang, Q. Li, S. Fan, and J. Wang, Nanoscale 9, 6716 (2017).   DOI
9 T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, Nat. Nanotechnol. 6, 296 (2011).   DOI
10 S. Ryu, P. Lee, J. B. Chou, R. Xu, R. Zhao, A. J. Hart, and S.-G. Kim, ACS Nano 9, 5929 (2015).   DOI
11 J.-H. Kong, N.-S. Jang, S.-H. Kim, and J.-M. Kim, Carbon 77, 199 (2014).   DOI
12 J. Shintake, E. Piskarev, S. H. Jeong, and D. Floreano, Adv. Mater. Technol. 3, 1700284 (2018).   DOI
13 S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim, and J.-H. Ahn, Carbon 51, 236 (2013).   DOI
14 X. Li, T. Yang, Y. Yang, J. Zhu, L. Li, F. E. Alam, X. Li, K. Wang, H. Cheng, C.-T. Lin, Y. Fang, and H. Zhu, Adv. Funct. Mater. 26, 1322 (2016).   DOI
15 X. Li, R. Zhang, W. Yu, K. Wang, J. Wei, D. Wu, A. Cao, Z. Li, Y. Cheng, Q. Zheng, R. S. Ruoff, and H. Zhu, Sci. Rep. 2, 870 (2012).   DOI
16 X. Guo, Y. Huang, Y. Zhao, L. Mao, L. Gao, W. Pan, Y. Zhang, and P. Liu, Smart Mater. Struct. 26, 095017 (2017).   DOI
17 S. W. Lee, J. J. Park, B. H. Park, S. C. Mun, Y. T. Park, K. Liao, T. S. Seo, W. J. Hyun, and O O. Park, ACS Appl. Mater. Interfaces 9, 11176 (2017).   DOI
18 J. Zhou, H. Yu, X. Xu, F. Han, and G. Lubineau, ACS Appl. Mater. Interfaces 9, 4835 (2017).   DOI
19 S. Chen, Y. Wei, X. Yuan, Y. Lin, and L. Liu, J. Mater. Chem. C 4, 4304 (2016).   DOI
20 S. Duan, Z. Wang, L. Zhang, J. Liu, and C. Li, Adv. Mater. Technol. 3, 1800020 (2018).   DOI
21 P. T. Hoang, N. Salazar, T. N. Porkka, K. Joshi, T. Liu, T. J. Dickens, and Z. Yu, Nanoscale Res. Lett. 11, 422 (2016).   DOI
22 S. Shengbo, L. Lihua, J. Aoqun, D. Qianqian, J. Jianlong, Z. Qiang, and Z. Wendong, Nanotechnology 29, 255202 (2018).   DOI
23 K. E. Korte, S. E. Skrabalak, and Y. Xia, J. Mater. Chem. 18, 437 (2008).   DOI