Browse > Article
http://dx.doi.org/10.46670/JSST.2021.30.6.388

A review of 3D printing technology for piezoresistive strain/loadcell sensors  

Cho, Jeong Hun (Department of Mechanical & Design Engineering, Pukyong National University)
Moon, Raymond Hyun Woo (Department of Mechanical & Design Engineering, Pukyong National University)
Kim, Sung Yong (Department of Mechanical & Design Engineering, Pukyong National University)
Choi, Baek Gyu (Department of Mechanical & Design Engineering, Pukyong National University)
Oh, Gwang Won (Department of Mechanical & Design Engineering, Pukyong National University)
Joung, Kwan Young (Innovative Smart Manufacturing R&D Department, KITECH)
Kang, In Pil (Department of Mechanical & Design Engineering, Pukyong National University)
Publication Information
Journal of Sensor Science and Technology / v.30, no.6, 2021 , pp. 388-394 More about this Journal
Abstract
The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3D printing also can produce the sensor using various materials and design its sensing structure with freely optimized shapes. Hence, 3D printing is expected to be a new technology that can produce sensors on-site and respond to on-demand demand by combining it with open platform technology. Therefore, this paper reviews three standard 3D printing technologies, such as Fused Deposition Modeling (FDM), Direct Ink Writing (DIW), and Digital Light Processing (DLP), which can apply to the sensor fabrication process. The review focuses on strain/load sensors having both sensing material features and structural features as well. NCPC (Nano Carbon Piezoresistive Composite) is also introduced as a promising 3D material due to its favorable sensing characteristics.
Keywords
3D printed sensor; Nano carbon composite; Loadcell; Piezoresistivity; Strain sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 https://www.chosun.com/economy/tech_it/2021/10/14/QSUV6NPMOFASLOOR4ILWZ46FA4/(retrieved on Oct. 18, 2021)
2 H. Liu, H. Zhang, W. Han, H. Lin, R. Li, J. Zhu, and W. Huang, "3D Printing Flexible Strain Sensors: From Printing to Devices and Signals", Adv. Mater., Vol. 33. 8, pp. 2004782(1)-2004782(19), 2021.
3 T. Blachowicz and A. Ehrmann, "3D Printed MEMS Technology-Recent Developments and Applications", Micromachines, Vol. 11, No. 4, pp. 434(1)-434(14), 2020.
4 S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, and D. A. Hutchins, "A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors", PLoS One, Vol. 7, No. 11, pp. e49365(1)-e49365(6), 2012.   DOI
5 S. H. Oh, "3D printing of Ceramics: Introduction and the Feasibility in Dentistry", J. Korean Dent. Assoc., Vol. 58, No. 7, pp. 448-459, 2020.   DOI
6 H. Guo, R. Lv, and S. Bai, "Recent advances on 3D printing graphene-based composites", Nano Mater. Sci., Vol. 1, No. 2, pp. 101-115, 2019.   DOI
7 S. H. Ko and J. H, Kwon, "Printing for Micro/nano-fabrication", J. KSME, Vol. 59, No. 3, pp.22-43, 2019.
8 I. P. Kang, M. J. Schulz, J. H. Kim, S. Shanov, and D. Shi, "A Carbon Nanotube Strain Sensor for Structural Health Monitoring", Smart Mater. Struct., Vol. 15, No. 3, pp. 737-748, 2006.   DOI
9 I. P. Kang, "A Study on Sensing Characteristics of Carbon Nanotube Smart Composite Nano Sensors Based on Electrical Impedance Measurement", J. Korean Soc. Power System Engineering, Vol. 13, No. 1, pp. 65-71, 2009.
10 K. Y. Joung, S. Y. Kim, I. P. Kang, and S. H. Cho, " 3D-Printed Load Cell Using Nanocarbon Composite Strain Sensor", Sens., Vol. 21, No. 11, 2021.
11 J. F. Christ, N. Aliheidari, P. Potschke, and A. Ameli, "Bidirectional and Stretchable Piezoresistive Sensors Enabled by Multimaterial 3D Printing of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites", Polym., Vol. 11, No. 1, pp. 11(1)-11(16), 2019.   DOI
12 G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, "Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling", Compos. A, Vol. 76, pp. 110-114, 2015.   DOI
13 T. D. Ngo, A. Kashan, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges", Compos. B Eng., Vol. 143, pp. 172-196, 2018.   DOI
14 A. Cortes, X. F. Sanchez-Romate, and A. Jimenez-Suarez "Mechanical and Strain-Sensing Capabilities of Carbon Nanotube Reinforced Composites by Digital Light Processing 3D Printing Technology", Polym., Vol. 12, No. 4, pp. 975(1)-975(15), 2020.   DOI
15 T. Xiao, C. Qian, and R. Yin, "3D Printing of Flexible Strain Sensor Array Based on UV-Curable Multiwalled Carbon Nanotube/Elastomer Composite", Adv. Mater. Technol., Vol. 6, No. 1, pp. 2000745(1)-200745(10), 2020.
16 G. Gonzalez, E. Fantino, and V. Bertana, "Development of 3D printable formulations containing CNT with enhanced electrical properties", Polym., Vol. 109, pp. 246-253, 2017.   DOI
17 https://3dplife.tistory.com/100 (retrieved on Oct. 10, 2021)
18 I. P. Kang, K. Y. Joung, B. K. Choi, S. Y. Kim, G. W. Oh, B. T. Kim, and W. K. Baek, "A Study on Load Cell Development by means of Nano-Carbon Piezo-resistive Composite and 3D printing", J. Drive Control, Vol. 17, No. 4, pp. 97-102, 2020.   DOI
19 J. F. Christ, N. Aliheidari, A. Ameli, and P. Potschke, "3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nano composites", Mater. Des., Vol. 131, pp. 392-401, 2017.
20 K. Y. Kim, J. H. Park, J. H. Suh, M .S. Kim, Y. R. Jeong, and I.K. Park, "3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments", Sens. Actuators A Phys., Vol. 263, pp. 493-500, 2017.   DOI
21 M. G. A. Mohamed, H. Kumer, and Z. Wang, "Rapid and Inexpensive Fabrication of Multi-Depth Microfluidic Device using High-Resolution LCD Stereolithographic 3D Printing", Manuf. Mater. Process., Vol. 3, No. 1, pp. 26(1)-26(11), 2019.
22 A. Mora, P. Verma, and S. Kumar, "Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling", Compos. B. Eng., Vol. 183. pp. 107600(1)-107600(28), 2020.
23 K. Gnanasekaran, T. Heijimans, S. V. Bennekom, H. Woldhuis, S. Winjnia, G.D. With, and H. Friedrich, "3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling", Appl. Mater. Today, Vol. 9, pp. 21-28, 2017.   DOI
24 S. Y. Kim and I. P. Kang, "A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing", Trans. Korean Soc. Mech. Eng. - A, Vol. 41, No. 3, pp. 187-192, 2017.   DOI
25 W. Huang, K. Dai, Y. Zhai, H. Liu, P. Zhan, J. Gao, G. Zheng, C. Liu, and C. Shen, "Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability", ACS App. Mater. Interfaces, Vol. 9, No. 48, pp. 42266-42277, 2017.   DOI
26 K. Li, H. Wei, and W. Liu, "3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing", Nanotechnol., Vol. 29 No. 18, pp. 185501(1)-185501(8), 2018.   DOI
27 X. Wan, F. Zhang, Y. Liu, and J. Leng, "CNT-based electro-responsive shape memory functionalized 3D printed nanocomposites for liquid sensors", Carbon, Vol. 155, pp. 77-87, 2019.   DOI