• Title/Summary/Keyword: phylogenetic

Search Result 3,116, Processing Time 0.03 seconds

Isolation of Stenotrophomonas rhizopilae Strain GFC09 with Ginsenoside Converting Activity and Anti-wrinkle Effects of Converted Ginsenosides (사포닌 전환 활성 Stenotrophomonas rhizopilae Strain GFC09 균주의 분리 동정 및 전환 사포닌의 주름 개선 효과)

  • Min, Jin Woo;Kim, Hye-Jin;Joo, Kwang-Sik;Kang, Hee-Cheol
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.375-382
    • /
    • 2015
  • Ginsenosides (ginseng saponin) as the one of important pharmaceutical compounds of ginseng and is responsible for the pharmacological and biological activities. These ginsenoside produces diverse small molecules ginsenoside which have more pharmacological activities including anti-wrinkle, anti-cancer and anti-oxidant effects. In the present study, we isolated bacteria using esculin agar, to produce ${\beta}$-glucosidase, and we focused on the bio-transformation of ginsenoside. Phylogenetic tree analysis was performed by comparing the 16S rRNA sequences; we identified the strain as Stenotrophomonas rhizopilae strain GFC09. In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside $Rb_1$. Bioconversion of ginsenoside $Rb_1$ were analyzed using TLC and HPLC. The crude enzyme hydrolyzed the ginsenoside $Rb_1$ along the following pathway: LB: $Rb_1{\rightarrow}Rd{\rightarrow}F_2$ into compound K, TSB: $Rb_1{\rightarrow}Rd{\rightarrow}F_2$. The structure of the hydrolyzed metabolites were identified by NMR. The activity screening tests showed that the conversion product induced the production of type I procollagen in a dose-dependent manner. These results suggested that hydrolyzed ginseng product containing the ginsenoside $F_2$ and compound K could be useful as an active ingredient for wrinkle-care cosmetics.

Biochemical and cultural characteristics of mineral-solubilizing Acinetobacter sp. DDP346 (미네랄 가용화능을 갖는 Acinetobacter sp. DDP346의 생화학적 및 배양학적 특성)

  • Kim, Hee Sook;Lee, Song Min;Oh, Ka-Yoon;Kim, Ji-Youn;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.333-341
    • /
    • 2021
  • In this study, to select strains suitable as microbial agent from among rhizosphere microorganisms present in rhizosphere soil and roots, the mineral solubilization ability, antifungal activity against 10 types of plant pathogenic fungi, and plant growth-promoting activity of rhizosphere microorganisms were evaluated. As a result, DDP346 was selected because it has solubilization ability of phosphoric acid, calcium carbonate, silicon, and zinc; nitrogen fixing ability; production ability of siderophore, indole-3-acetic acid, and aminocyclopropane-1-carboxylate deaminase; and antifungal activity against seven types of plant pathogenic fungi. DDP346 showed a 99.9% homology with Acinetobacter pittii DSM 21653 (NR_117621.1); phylogenetic analysis also revealed a close relationship with Acinetobacter pittii based on the 16S rRNA base sequence. The growth conditions of DDP346 were identified as temperatures in the range of 10-40 ℃, pH in the range of 5-11, and salt concentrations in the range of 0-5%. In addition, a negative correlation coefficient (r2 = -0.913, p <0.01) was shown between pH change and the solubilized phosphoric acid content of Acinetobacter sp. DDP346, and this is assumed to be due to the organic acid generated during culture. Consequently, through the evaluation of its mineral solubilization ability, antifungal activity against plant pathogenic fungi, and plant growth-promoting activity, the potential for the utilization of Acinetobacter sp. DDP346 as a multi-purpose microbial agent is presented.

Occurrence of Fungal Contamination in Ginseng Sprout and Mycotoxigenic Potential (새싹삼의 곰팡이 발생과 독소생성능)

  • Choi, Jang Nam;Kim, So soo;Choi, Jung-Hye;Baek, Seul Gi;Park, Jin Ju;Jang, Ja Yeong;Hyun, Jeong-Eun;Kim, Se-Ri;Kim, Jeom-Soon;Lee, Theresa
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.407-417
    • /
    • 2021
  • In order to investigate frequency of fungal contamination in ginseng sprout, we collected 18 types of retail ginseng sprouts and analyzed them. Overall frequency of fungal contamination ranged from 113.3 to 174.1% with the highest occurrence of Penicillium spp. Fungal detection rate was significantly higher in moss than in stem, leaf and root of ginseng sprout. Penicillium spp. occurred in leaf and stem with the highest incidence and Fusarium spp., in root. Among Penicillium spp. and Fusarium spp., P. olsonii and F. oxysporum were dominant, respectively. Nine Fusarium species, Aspergillus westerdijkiae, Aspergillus flavus, and 11 Penicillium species were identified by phylogenetic analysis. PCR screening of mycotoxigenic potential revealed that 19 out of 25 isolates tested were positive for respective mycotoxin biosynthetic gene. Two 2 A. flavus and 11 A. westerdijkiae isolates produced varying amount of aflatoxin or ochratoxin A in czapek yeast extract brothsome of which showed high levels of mycotoxin production. These results suggests a need for continuous monitoring and management program to control fungal contamination in the ginseng sprout production chain.

Occurrence of a Natural Intergeneric Hybrid between a Female Tanakia lanceolata and a Male Rhodeus pseudosericeus (Cypriniformes: Cyprinidae) in Daecheoncheon Stream Flowing into the Yellow Sea in the Republic of Korea (서해안 독립 하천 대천천에서 납자루 Tanakia lanceolata (♀)와 한강납줄개 Rhodeus pseudosericeus(♂)의 자연 속간잡종 출현)

  • Kim, Yong Hwi;Sung, Mu Sung;Yun, Bong Han;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.33 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • A male, presumed to be an intergeneric hybrid between Tanakia lanceolata and Rhodeus pseudosericeus, was collected in the Boryeong Daecheoncheon Stream flowing into the Yellow Sea in the Republic of Korea. Morphological and molecular phylogenetic analyses were performed to discriminate the definite origin of the estimated natural hybrid. As a result of the morphological analysis, the color of the dorsal and anal fin rays edges of the natural hybrid individual, the upper and lower body colors followed the morphological characteristics of T. lanceolata, and that blue longitudinal stripe in the center of the caudal peduncle, the incomplete lateral line, and the barbels absent followed the morphological characteristics of R. pseudosericeus. In addition, as a result of the cytochrome b (cytb) gene analysis of mitochondrial DNA (mtDNA), the natural hybrid showed a nucleotide sequence similarity of 99.82 to 100% with T. lanceolata, and the maternal species was identified as T. lanceolata. As a result of the recombination activating gene 1 (rag1) gene analysis of nuclear DNA (nDNA), the natural hybrid showed double peaks pattern reflecting both the single nucleotide polymorphism sites (38 bp) between T. lanceolata and R. pseudosericeus, and the paternal species was identified as R. pseudosericeus. Therefore, a natural hybrid estimated male of Acheilognathinae analyzed in this study was found to be an intergeneric hybrid between a female T. lanceolata and a male R. pseudosericeus.

Generation of Bacterial Blight Resistance Rice with Transcription Factor OsNAC69-overexpressing (전사인자 OsNAC69-과발현을 통한 흰잎마름병 저항성 벼 제작)

  • Park, Sang Ryeol;Cha, Eun-Mi;Moon, Seok Jun;Shin, Dongjin;Hwang, Duk-Ju;Ahn, Il-Pyung;Bae, Shin-Chul
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.457-463
    • /
    • 2011
  • Plant specific gene family, NAC (NAM, ATAF, and CUC) transcription factors have been characterized for their roles in plant growth, development, and stress tolerance. In this study, we isolated OsNAC69 gene and analyzed expression level by inoculation of bacterial leaf blight pathogen, Xanthomonas oryzae pv. oryzae (Xoo). NAC transcription factor family can be divided into five groups (I-V). On the basis of phylogenetic analysis, OsNAC69 was fall into group II. OsNAC69 was strongly induced 1 hr after infected with Xoo. To investigate its biological function in the rice, we constructed vector for overexpression in rice, and then generated transgenic rice lines. Gene expression of OsNAC69-overexpressed transgenic rice lines were analyzed by northern blot. Analysis of disease resistance to pathogen Xoo, nine OsNAC69-overexpressed transgenic rice lines showing high expression level of OsNAC69 were shown more resistant than wild type. These results suggest that OsNAC69 gene may play regulatory role during pathogen infection.

Distribution and Biodiversity of Lactic Acid Bacteria Having Bacteriocin-like Activity from Fresh Fruits and Vegetables (신선 과채류에 존재하는 박테리오신 유사 활성을 지니는 유산균의 분포와 다양성)

  • Park, Young-Seo;Jang, Jae Kweon;Choi, Young Jin;Chung, Myong-Soo;Park, Hoon;Shim, Kun-Sub
    • Food Engineering Progress
    • /
    • v.13 no.1
    • /
    • pp.64-69
    • /
    • 2009
  • From the 25 fresh fruits and vegetable products, 1,250 isolates grown on MRS agar media were screened for the inhibitory activity on the growth of Escherichia coli 0157:H7, Listeria monocytogenes, and Bacillus cereus as well as Lactobacillus plantarum, L. casei, and Lactococcus lactis subsp. lactis. Among them, 607 isolates (49% of total isolates) from 23 different foods produced growth inhibitory activity on the E. coli 0157:H7, L. monocytogenes, or B. cereus. When these isolates were screened for the inhibitory activity on the growth of L. plantarum, L. casei, and Lactococcus lactis subsp., 24 isolates (3% of total isolates) from 7 food samples showed bacteriocin-like activity. These isolates had typical physiological characteristics of lactic acid bacteria, which indicated these isolates were strains of lactic acid bacteria. The inhibitor from 3 out of 24 revealed as nicin. From the RAPD-PCR profiles, 24 strains was classified and it was also indicated that most of the strains isolated from same produce showed similar phylogenetic profile.

Differences in isolates of Tomato yellow leaf curl virus in tomato fields located in Daejeon and Chungcheongnam-do between 2017 and 2018

  • Oh, June-Pyo;Choi, Go-Woon;Kim, Jungkyu;Oh, Min-Hee;Kim, Kang-Hee;Park, Jongseok;Domier, Leslie L.;Hammond, John;Lim, Hyoun-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.507-517
    • /
    • 2019
  • To follow up on a 2017 survey of tomato virus diseases, samples with virus-like symptoms were collected from the same areas (Buyeo-gun, Chungchungnam-Do and Daejeon, Korea) in 2018. While in 2017 mixed infections of Tomato mosaic virus with either Tomato yellow leaf curl virus (TYLCV) or Tomato chlorosis virus were detected, only TYLCV was detected in symptomatic samples in 2018. TYLCV amplicons of c.777 bp representing the coat protein (CP) coding region were cloned from the TYLCV positive samples, and the sequence data showed a 97.17% to 98.84% nucleotide and 98.45% to 99.22% amino acid identity with the 2017 Buyeo-gun isolate (MG787542), which had the highest amino acid (aa) sequence identity of up to 99.2% with four 2018 Buyeo-gun sequences (MK521830, MK521833, MK521834, and MK521835). The lowest aa sequence identity of 98.45% was found in a 2018 Daejeon isolate (MK521836); the distance between Buyeo-gun and Daejeon is about 45 km. Phylogenetic analysis indicated that the currently reported CP sequences are most closely related to Korean sequences from Masan (HM130912), Goseong (JN680149), Busan (GQ141873), Boseong (GU325634), and the 2017 isolate TYLCV-N (MG787543) in the 'Japan' cluster of TYLCV isolates and distinct from the 'China' cluster isolates from Nonsan (GU325632), Jeonju (HM130913) and Jeju (GU325633, HM130914). Our survey data from 2017 and 2018 suggest that TYLCV has become established in Korea and may be spread by whitefly vectors from weed reservoirs within the farm environment.

Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium saccharobutylicum

  • Miguel, Michelle A.;Lee, Sung Sill;Mamuad, Lovelia L.;Choi, Yeon Jae;Jeong, Chang Dae;Son, Arang;Cho, Kwang Keun;Kim, Eun Tae;Kim, Sang Bum;Lee, Sang Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1083-1095
    • /
    • 2019
  • Butyrate is known to play a significant role in energy metabolism and regulating genomic activities that influence rumen nutrition utilization and function. Thus, this study investigated the effects of an isolated butyrate-producing bacteria, Clostridium saccharobutylicum, in rumen butyrate production, fermentation parameters and microbial population in Holstein-Friesian cow. An isolated butyrate-producing bacterium from the ruminal fluid of a Holstein-Friesian cow was identified and characterized as Clostridium saccharobutylicum RNAL841125 using 16S rRNA gene sequencing and phylogenetic analyses. The bacterium was evaluated on its effects as supplement on in vitro rumen fermentation and microbial population. Supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum increased (p < 0.05) microbial crude protein, butyrate and total volatile fatty acids concentration but had no significant effect on $NH_3-N$ at 24 h incubation. Butyrate and total VFA concentrations were higher (p < 0.05) in supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum compared with control, with no differences observed for total gas production, $NH_3-N$ and propionate concentration. However, as the inclusion rate (CFU/ml) of C. saccharobutylicum was increased, reduction of rumen fermentation values was observed. Furthermore, butyrate-producing bacteria and Fibrobacter succinogenes population in the rumen increased in response with supplementation of C. saccharobutylicum, while no differences in the population in total bacteria, protozoa and fungi were observed among treatments. Overall, our study suggests that supplementation with $10^6CFU/ml$ C. saccharobutylicum has the potential to improve ruminal fermentation through increased concentrations of butyrate and total volatile fatty acid, and enhanced population of butyrate-producing bacteria and cellulolytic bacteria F. succinogenes.

Exocyclic GpC DNA methyltransferase from Celeribacter marinus IMCC12053 (Celeribacter marinus IMCC12053의 외향고리 GpC DNA 메틸트랜스퍼라아제)

  • Kim, Junghee;Oh, Hyun-Myung
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • DNA methylation is involved in diverse processes in bacteria, including maintenance of genome integrity and regulation of gene expression. CcrM, the DNA methyltransferase conserved in Alphaproteobacterial species, carries out $N^6$-adenine or $N^4$-cytosine methyltransferase activities using S-adenosyl methionine as a co-substrate. Celeribacter marinus IMCC12053 from the Alphaproteobacterial group was isolated from a marine environment. Single molecule real-time sequencing method (SMRT) was used to detect the methylation patterns of C. marinus IMCC12053. Gibbs motif sampler program was used to observe the conversion of adenosine of 5'-GANTC-3' to $N^6$-methyladenosine and conversion of $N^4$-cytosine of 5'-GpC-3' to $N^4$-methylcytosine. Exocyclic DNA methyltransferase from the genome of strain IMCC12053 was chosen using phylogenetic analysis and $N^4$-cytosine methyltransferase was cloned. IPTG inducer was used to confirm the methylation activity of DNA methylase, and cloned into a pQE30 vector using dam-/dcm- E. coli as the expression host. The genomic DNA and the plasmid carrying methylase-encoding sequences were extracted and cleaved with restriction enzymes that were sensitive to methylation, to confirm the methylation activity. These methylases protected the restriction enzyme site once IPTG-induced methylases methylated the chromosome and plasmid, harboring the DNA methylase. In this study, cloned exocyclic DNA methylases were investigated for potential use as a novel type of GpC methylase for molecular biology and epigenetics.

Genetic Diversity and Relationship in Soybean MDP (Mutant Diversity Pool) Revealed by TRAP and TE-TRAP Markers

  • Kim, Dong-Gun;Bae, Chang-Hyu;Kwon, Soon-Jae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.32-32
    • /
    • 2019
  • Mutation breeding is the useful tool to improve agronomic traits in various crop species. Soybean is most important crop and is rich in protein and oil contents. Despite of the importance as economic value and various genetic resource of soybean, there have been limited studies of genetic relationship among mutant resources through radiation breeding. In this study, the agronomical phenotype for selecting various genetic resources was evaluated in 528 soybean mutant lines. As a result, 210 soybean mutants with their original cultivars were selected with various traits. We named 210 selected lines as Mutant Diversity Pool (MDP). The genetic diversity and the relationship of the MDP were investigated using TRAP and TE-TRAP markers. In TRAP analysis, sixteen primer combination (PC)s were used and a total of 551 fragments were amplified. The highest (84.00%) and the lowest (32.35%) polymorphism levels were showed in PC MIR157B+Ga5 and B14G14B+Ga3, respectively. The mean of PIC values was 0.15 ranging from 0.07 in B14G14B+Sa12 to 0.23 in MIR157B+Sa4. Phylogenetic and population structure analysis indicated that the 210 MDP lines dispersed to four groups among the wild types and their mutants. The highest genetic diversity among populations was observed between lines Paldal and 523-7 (Fst=0.409), whereas the lowest genetic diversity was between population KAS360-22 and 94seori (Fst=0.065). AMOVA showed 11.583 (21.0%) and 43.532 (79.0%) variations in inter and intra mutant population, respectively. Overall, the genetic similarity of each intra mutant populations was closer than that of inter mutant population. A total of 408 fragments were amplified in the 210 MDP using twelve PCs of TE-TRAP markers that were obtained from a combination of three TIR sequence of transposable elements (MITE-stowaway; M-s, MITE-tourist; M-t, PONG). The highest (77.42%) and the lowest (56.00%) polymorphism levels were showed in PONG+Sa4 and PONG+Sa12, respectively. The mean of PIC values was 0.15 ranging from 0.09 in M-s+Sa4 and M-s+Ga5 to 0.21 in M-t+Ga5. AMOVA of M-s showed 2.209 (20%) and 8.957 (80%) variations in inter and intra mutant population, respectively. AMOVA of M-t showed 2.766 (18%) and 12.385 (82%) variations in inter and intra mutant population, respectively. AMOVA of PONG showed 3.151 (29%) and 7.646 (71%) variations in inter and intra mutant population, respectively. According to our study, the PONG had higher inter mutant population and lower intra mutant population. This mean was that for aspect of radiation sensitivity, M-s and M-t showed higher mobility than that of PONG. Our results suggest that the TRAP and the TE-TRAP markers may be useful for assessing the genetic diversity and relationship among soybean MDP and help to improve our knowledge of soybean mutation/radiation breeding.

  • PDF