DOI QR코드

DOI QR Code

Occurrence of Fungal Contamination in Ginseng Sprout and Mycotoxigenic Potential

새싹삼의 곰팡이 발생과 독소생성능

  • Choi, Jang Nam (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, So soo (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Choi, Jung-Hye (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Baek, Seul Gi (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, Jin Ju (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jang, Ja Yeong (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Hyun, Jeong-Eun (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Se-Ri (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Jeom-Soon (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Theresa (Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • 최장남 (농촌진흥청 국립농업과학원 유해생물과) ;
  • 김소수 (농촌진흥청 국립농업과학원 유해생물과) ;
  • 최정혜 (농촌진흥청 국립농업과학원 유해생물과) ;
  • 백슬기 (농촌진흥청 국립농업과학원 유해생물과) ;
  • 박진주 (농촌진흥청 국립농업과학원 유해생물과) ;
  • 장자영 (농촌진흥청 국립농업과학원 유해생물과) ;
  • 현정은 (농촌진흥청 국립농업과학원 유해생물과) ;
  • 김세리 (농촌진흥청 국립농업과학원 유해생물과) ;
  • 김점순 (농촌진흥청 국립농업과학원 유해생물과) ;
  • 이데레사 (농촌진흥청 국립농업과학원 유해생물과)
  • Received : 2021.08.20
  • Accepted : 2021.10.08
  • Published : 2021.10.30

Abstract

In order to investigate frequency of fungal contamination in ginseng sprout, we collected 18 types of retail ginseng sprouts and analyzed them. Overall frequency of fungal contamination ranged from 113.3 to 174.1% with the highest occurrence of Penicillium spp. Fungal detection rate was significantly higher in moss than in stem, leaf and root of ginseng sprout. Penicillium spp. occurred in leaf and stem with the highest incidence and Fusarium spp., in root. Among Penicillium spp. and Fusarium spp., P. olsonii and F. oxysporum were dominant, respectively. Nine Fusarium species, Aspergillus westerdijkiae, Aspergillus flavus, and 11 Penicillium species were identified by phylogenetic analysis. PCR screening of mycotoxigenic potential revealed that 19 out of 25 isolates tested were positive for respective mycotoxin biosynthetic gene. Two 2 A. flavus and 11 A. westerdijkiae isolates produced varying amount of aflatoxin or ochratoxin A in czapek yeast extract brothsome of which showed high levels of mycotoxin production. These results suggests a need for continuous monitoring and management program to control fungal contamination in the ginseng sprout production chain.

새싹삼의 곰팡이 발생을 조사하기 위해 18점의 유통중인 새싹삼을 수집하여 곰팡이 발생빈도를 분석하였다. 전체 시료의 총 곰팡이 발생빈도는 평균 113.3-174.1%였고 Penicillium spp.의 발생빈도가 가장 높았다. 곰팡이 발생빈도는 이끼가 잎, 줄기, 뿌리보다 유의하게 높았다. 잎과 줄기에서는 Penicillium spp.이, 뿌리에서는 Fusarium spp.의 발생이 높았으며 각각의 우점종은 P. olsonii와 F. oxysporum으로 동정되었다. 계통발생학적 분석을 통해 Fusarium spp.은 총 9개 종, Aspergillus spp.은 A. westerdijkiae와 A. favus, Penicillium spp.은 총 11개 종이 동정되었다. 곰팡이독소 생성 종으로 알려진 25균주의 독소형을 PCR로 검정한 결과 19점의 균주에서 각 독소형이 확인되었다. 이 중 A. flavus 2점과 A. westerdijkiae 11점이 aflatoxin과 ochratoxin A을 각각 생성하였고 일부 균주는 높은 독소생성능을 보였다. 이 결과는 새싹삼 생산에 있어 곰팡이 발생에 대한 지속적인 모니터링 및 관리방안이 필요함을 시사하였다.

Keywords

Acknowledgement

본 연구는 2021년 농촌진흥청 국립농업과학원 전문연구원 과정 지원사업(과제번호: PJ01579003)에 의해 이루어진 것임.

References

  1. Jang, I.B., Yu, J., Suh, S.J., Jang, I.B., Kwon, K.B., Growth and ginsenoside content in different parts of ginseng sprouts depending on harvest time. Korean J. Medicinal Crop Sci., 26, 205-213 (2018). https://doi.org/10.7783/KJMCS.2018.26.3.205
  2. Pyo, M.J., Cho, A.R., Kang, M. J., Kim, G.W., Shin, J.H., Physicochemical characteristics and ginsenoside content of Korean traditional wine produced by fermentation of Panax ginseng sprouts. Korean J. Food Preserv., 25, 659-667 (2018). https://doi.org/10.11002/kjfp.2018.25.6.659
  3. Cho, A.R., Pyo, M.J., Kang, M.J., Shin, J.H., Evaluation of phytochemical contents and physiological activity in Panax ginseng sprout during low-temperature aging. Korean J. Food Preserv. 26, 38-48 (2019). https://doi.org/10.11002/kjfp.2019.26.1.38
  4. Seong, B.J., Kim, S.I., Jee, M.G., Lee, H.C., Kwon, A.R., Kim, H.H., Won, J.Y., Lee, K.S., Changes in growth, active ingredients, and rheological properties of greenhouse-cultivated ginseng sprout during its growth period. Korean J. Medicinal Crop Sci., 27, 126-135 (2019). https://doi.org/10.7783/KJMCS.2019.27.2.126
  5. Lee, D.U., Ku, H.B., Lee, Y.J., Kim, G.N., Lee, S.C., Antioxidant and antimelanogenic activities of Panax ginseng sprout extract. J. Korean. Soc. Food Sci. Nutr., 48, 699-703 (2019). https://doi.org/10.3746/jkfn.2019.48.7.699
  6. Chang, E.H., Lee, J.H., Choi, J.W., Shin, I.S., Hong, Y.P., Effects of film packaging and gas composition on the distribution and quality of ginseng sprouts. Korean J. Medicinal Crop Sci. 28, 152-166 (2020). https://doi.org/10.7783/KJMCS.2020.28.2.152
  7. Shim, W.B., Kim, J.S., Kim, S.R., Park, K.H., Chung, D.H., Microbial contamination levels of ginseng and ginseng products distributed in Korean markets. J. Food Hyg. Saf. 28, 319-323 (2013). https://doi.org/10.13103/JFHS.2013.28.4.319
  8. Lee, T., Kim, S.S., Busman, M., Proctor, R.H., Ham, H.H., Lee, S.H., Hong, S.K., Ryu, J.G., Rapid detection method for fusaric acid-producing species of Fusarium by PCR. Res. Plant Dis., 21, 326-329 (2015). https://doi.org/10.5423/RPD.2015.21.4.326
  9. White, T.J., Bruns, T., Lee S., Taylor, J., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a guide to methods and applications, Academic Press, 315-322 (1990).
  10. Glass, N.L., Donaldson, G.C., Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol., 61, 1323-1330 (1995). https://doi.org/10.1128/aem.61.4.1323-1330.1995
  11. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25, 4876-4882 (1997). https://doi.org/10.1093/nar/25.24.4876
  12. Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35, 1547-1549 (2018). https://doi.org/10.1093/molbev/msy096
  13. Ehrlich, K.C., Chang, P.K., Yu, J., Cotty, P.J., Aflatoxin biosynthesis cluster gene cypA is required for G aflatoxin formation. Appl. Environ. Microbiol., 70, 6518-6524 (2004). https://doi.org/10.1128/AEM.70.11.6518-6524.2004
  14. Dao, H.P., Mathieu, F., Lebrihi, A., Two primer pairs to detect OTA producers by PCR method. Int. J. Food Microbiol., 104, 61-67 (2005). https://doi.org/10.1016/j.ijfoodmicro.2005.02.004
  15. Dombrink-Kurtzman, M.A., McGovern, A.E., Species-specific identification of Penicillium linked to patulin contamination. J. Food Prot., 70, 2646-2650 (2007). https://doi.org/10.4315/0362-028X-70.11.2646
  16. Proctor, R.H., Plattner, R.D., Brown, D.W., Seo, J.A., Lee, Y.W., Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol. Res., 108, 815-822 (2004). https://doi.org/10.1016/S0953-7562(08)60393-7
  17. Ministry of Food and Drug Safty, 2019, Korea food code (Test methods). Korea, pp. 1748-1767.
  18. Serra, R., Mendonca, C., Venancio, A., Ochratoxin A occurrence and formation in Portuguese wine grapes at various stages of maturation. Int. J. Food Mycobiol., 111, S35-S39 (2006). https://doi.org/10.1016/j.ijfoodmicro.2006.03.007
  19. Kwon, J.H., Kang, S.W., Kim, J.S., Park, C.S., Blue mold on melon (Cucumis melo) caused by Penicillium oxalicum. Res. Plant Dis., 8, 220-223 (2002). https://doi.org/10.5423/RPD.2002.8.4.220
  20. Kang, H.J., Park, T.W., Lim, Y.T., Biodegradable aliphatic polyester (II): Evaluation of biodegradability of copolyesterethylene. Polymer, 20, 960-970 (1996).
  21. Anjum, N., Shahid, A.A., Iftikhar, S., Nawas, K., Haider, M.S., First report of postharvest fruit rot of tomato (Lycopersicum esculentum Mill.) caused by Pencillium olsonii in Pakistan. Plant Dis., 102, 451 (2018).
  22. Chartterton, S., Yylie, A.C., Punja, Z.K., Fruit infection and postharvest decay of greenhouse tomatoes caused by Penicillium species in British Columbia. Can. J. Plant Pathol., 34, 524-535 (2012). https://doi.org/10.1080/07060661.2012.710069
  23. Kim, H.H., Jeon, H.Y., Yang, C.Y., Kang T.J., Han, Y.K., Transmission of Fusarium oxysporum by the fungus gnat, Bradysia difformis (Diptera: Sciaridae). Res. Plant Dis., 15, 262-265 (2009). https://doi.org/10.5423/RPD.2009.15.3.262
  24. Park, M.J., Back, C.G., Seo, Y.H., Park, J.H., First report of Fusarium oxysporum causing damping-off on paprika in Korea. Res. Plant dis., 25, 94-97 (2019). https://doi.org/10.5423/RPD.2019.25.2.94
  25. Park, H.W., Song, J.H., Kwon, K.B., Lee, U.H., Son, H.J., Growth characteristics of ginseng seedling transplanting by self soil nusery, nursery or hydroponic culture on main field. Korean J. Medicinal Crop Sci., 25, 238-243 (2017). https://doi.org/10.7783/KJMCS.2017.25.4.238
  26. Ham, H.H., Baek, J.S., Lee, M.J., Lee, T., Hong, S.K., Lee, S.D., Change of fungi and mycotoxin in hulled barley under different conditions and period. Korean J. Food Preserv., 24, 857-864 (2017). https://doi.org/10.11002/KJFP.2017.24.6.857
  27. Yang, Y.S., Lee, H.H., Kim, A.G., Ryu, K.Y., Choi, S.Y., Seo, D.R., Seo, K.W., Cho, B.S., Survey of mycotoxin contamination in grains and grain products. J. Food Hyg. Saf., 34, 205-211 (2019). https://doi.org/10.13103/JFHS.2019.34.2.205
  28. Wang, Z.G., Tong, Z., Cheng, S.Y., Cong, L.M., Study on pectinase and sclerotium producing abilities of two kinds of Aspergillus flavus isolates from Zhejiang. Mycopathologia, 121, 163-168 (1993). https://doi.org/10.1007/BF01104072
  29. Okoth, S.A., Nyongesa, B., Joutsjoki, V., Korhonen, H., Ayugi, V., Kang'ethe, E.K., Sclerotia formation and toxin production in large sclerotial Aspergillus flavus isolates from Kenya. Adv. Mycrobiol., 6, 47-56 (2016). https://doi.org/10.4236/aim.2016.61005
  30. Abarca, M.L., Bragulat, M.R., Cabanes, F.J., A new in vitro method to detect growth and ochratoxin A-producing ability of multiple fungal species commonly found in food commodities. Food Microbiol., 44, 243-248 (2014). https://doi.org/10.1016/j.fm.2014.06.014