Generation of Bacterial Blight Resistance Rice with Transcription Factor OsNAC69-overexpressing

전사인자 OsNAC69-과발현을 통한 흰잎마름병 저항성 벼 제작

  • Park, Sang Ryeol (Bio-crop Development Div., National Academy of Agricultural Science, Rural Development Administration) ;
  • Cha, Eun-Mi (Bio-crop Development Div., National Academy of Agricultural Science, Rural Development Administration) ;
  • Moon, Seok Jun (Bio-crop Development Div., National Academy of Agricultural Science, Rural Development Administration) ;
  • Shin, Dongjin (Bio-crop Development Div., National Academy of Agricultural Science, Rural Development Administration) ;
  • Hwang, Duk-Ju (Bio-crop Development Div., National Academy of Agricultural Science, Rural Development Administration) ;
  • Ahn, Il-Pyung (Bio-crop Development Div., National Academy of Agricultural Science, Rural Development Administration) ;
  • Bae, Shin-Chul (Bio-crop Development Div., National Academy of Agricultural Science, Rural Development Administration)
  • 박상렬 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과) ;
  • 차은미 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과) ;
  • 문석준 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과) ;
  • 신동진 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과) ;
  • 황덕주 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과) ;
  • 안일평 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과) ;
  • 배신철 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과)
  • Received : 2011.11.28
  • Accepted : 2011.12.16
  • Published : 2011.12.30

Abstract

Plant specific gene family, NAC (NAM, ATAF, and CUC) transcription factors have been characterized for their roles in plant growth, development, and stress tolerance. In this study, we isolated OsNAC69 gene and analyzed expression level by inoculation of bacterial leaf blight pathogen, Xanthomonas oryzae pv. oryzae (Xoo). NAC transcription factor family can be divided into five groups (I-V). On the basis of phylogenetic analysis, OsNAC69 was fall into group II. OsNAC69 was strongly induced 1 hr after infected with Xoo. To investigate its biological function in the rice, we constructed vector for overexpression in rice, and then generated transgenic rice lines. Gene expression of OsNAC69-overexpressed transgenic rice lines were analyzed by northern blot. Analysis of disease resistance to pathogen Xoo, nine OsNAC69-overexpressed transgenic rice lines showing high expression level of OsNAC69 were shown more resistant than wild type. These results suggest that OsNAC69 gene may play regulatory role during pathogen infection.

식물 특이 NAC (NAM, ATAF, and CUC) 전사인자는 식물 성장, 발달과 스트레스에 대한 저항성에 관여한다고 알려져 있다. 본 연구에서는 벼의 NAC 전사인자 중의 하나인 OsNAC69 유전자를 분리하였으며 유추된 아미노산 서열을 바탕으로 조사해본 결과 이 유전자는 NAC 전사인자의 5개 group 중에서 group II에 속하였다. 흰잎마름병균인 X. oryzae pv. oryzae (Xoo)를 처리하여 발현을 분석한 결과 접종 1시간 이후부터 발현이 현저하게 증가하였다. 따라서 OsNAC69 유전자의 생물학적인 기능을 분석하고자 이 유전자를 과발현시킨 형질전환벼를 만들었으며 형질전환벼의 분석 결과 대조구인 동진벼에 비해 발현이 높은 9개의 계통을 선발하였다. 높은 발현을 보인 이 9개의 계통에 벼흰잎마름병균을 접종한 결과 동진벼에 비해 흰잎마름병에 대한 저항성이 훨씬 더 증대하였음을 보여 주었다. 이것은 OsNAC69 유전자가 흰잎마름병균 침입시 벼의 병저항성 기작을 조절하여 나타난 결과로 추정되며 정확한 기작에 대한 연구를 앞으로 더 해야 할 것이다.

Keywords

Acknowledgement

Supported by : 국립농업과학원

References

  1. Collinge M, Boller T, 2001. Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46:521-529. https://doi.org/10.1023/A:1010639225091
  2. Dai LY, Liu XL, Xiao YH, Wang GL. 2007. Recent advances in cloning and characterization of disease resistance genes in rice. Journal of Integrative Plant Biology 49(1):112-119. https://doi.org/10.1111/j.1744-7909.2006.00413.x
  3. David O, Liu N, Ronald PC, Bogdanove AJ. 2006. Xanthomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology 7(5):303-324. https://doi.org/10.1111/j.1364-3703.2006.00344.x
  4. Duval M, Hsieh TF, Kim SY, Thomas TL. 2002. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol 50:237-248. https://doi.org/10.1023/A:1016028530943
  5. Ernst HA, Olsen AN, Larsen S, Lo Leggio L. 2004. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5:297-303. https://doi.org/10.1038/sj.embor.7400093
  6. Fang Y, You J, Xie K, Xie W, Xiong L. 2008. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Gen Genet 280(6):547-563. https://doi.org/10.1007/s00438-008-0386-6
  7. He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY. 2005. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903-916. https://doi.org/10.1111/j.1365-313X.2005.02575.x
  8. Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D. 2003. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53:383-397.
  9. Hiei Y, Ohta S, Komari T, Kumashiro T. 1994. Efficient transformation of rice(Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271-282. https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  10. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. 2006. Overexpressing a NAM, ATAF, and CUC(NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987- 12992. https://doi.org/10.1073/pnas.0604882103
  11. Hussain SS, Kayani MA, Amjad M. 2011. Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnology Progress 27:297-306. https://doi.org/10.1002/btpr.514
  12. Jiang J, Linscombe SD, Wang J, James Oard H. 2000. High Efficiency Transformation of U.S. Rice Lines from Mature Seed-Derived Calli and Segregation of Glufosinate Resistance under Field Conditions. Crop Sci 40:729-1741.
  13. Kauffman HE, Reddy APK, Hsieh SPY, Merca SD. 1973. An improved technique for evaluation of resistance of rice varieties to Xanthomonas oryzae. Plant Disease Reporter 57:537-541.
  14. Karganilla A, Paris-Natural M, Ou SH. 1973. A comparative study of culture media for Xanthomonas oryzae. Philipp Agric 57:141-152.
  15. Lee BM, Park YJ, Park DS, Kang HW, Kim JG, Song ES, Park IC, Yoon UH, Hahn JH, Koo BS, Lee GB, Kim H, Park HS, Yoon KO, Kim JH, Cho HJ, Koh NH, Seo JS, Go SJ. 2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research 33:577-586. https://doi.org/10.1093/nar/gki206
  16. Li ZK, Arif M, Zhong DB, Fu BY, Xu JL, Domingo- Rey J, Ali J, Vijayakumar CHM, Yu SB, Khush GS. 2006. Complex genetic networks underlying the defensive system of rice(Oryza sativa L.) to Xanthomonas oryzae pv. oryzae PNAS. 103 (21):7994-7999. https://doi.org/10.1073/pnas.0507492103
  17. Mew TW, Alvarez AM, Leach JE, Swlngs J. 1993. Focus on Bacterial Blight of Rice. Plant Disease 77:5-12. https://doi.org/10.1094/PD-77-0005
  18. Mundt CC, Nieva LP, Vera Cruz CM. 2002. Variation for aggressiveness within and between lineages of Xanthomonas oryzae pv. oryzae. Plant Pathology 51:163-168. https://doi.org/10.1046/j.1365-3059.2002.00674.x
  19. Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  20. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617-630 https://doi.org/10.1111/j.1365-313X.2007.03168.x
  21. Olsen AN, Ernst HA, Leggio LL, Skriver K. 2005. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79-87.
  22. Ramesh S, Nagadhara D, Reddy VD, Rao KV. 2004. Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Sci 166: 1077-1085. https://doi.org/10.1016/j.plantsci.2003.12.028
  23. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, New York, NY: Cold Spring Harbor Laboratory.
  24. Sasaki T, Matsumoto T, Antonio BA, Nagamura Y. 2005. From mapping to sequencing, post-sequencing and beyond. Plant Cell Physiol 46:3-13. https://doi.org/10.1093/pcp/pci503
  25. Shin MS, Kim KY, Park HS, Ko JK. 2011. Breeding for resistance to bacterial blight in rice. Kor. J. Breed. Sci. 43(4):251-261.
  26. Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481-2498. https://doi.org/10.1105/tpc.104.022699
  27. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. 2006. A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314: 1298-1301. https://doi.org/10.1126/science.1133649
  28. Wu XM, Li YR, Zou LF, Chen GY. 2007. Gene-for-gene relationships between rice and diverse avrBs3/pthA avirulence genes in Xanthomonas oryzae pv. oryzae. Plant pathology 56:26-34.
  29. Xie Q, Frugis G, Colgan D, Chua NH. 2000. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024- 3036. https://doi.org/10.1101/gad.852200