Browse > Article
http://dx.doi.org/10.35399/ISK.33.2.1

Occurrence of a Natural Intergeneric Hybrid between a Female Tanakia lanceolata and a Male Rhodeus pseudosericeus (Cypriniformes: Cyprinidae) in Daecheoncheon Stream Flowing into the Yellow Sea in the Republic of Korea  

Kim, Yong Hwi (Department of Life Science, Soonchunhyang University)
Sung, Mu Sung (Department of Life Science, Soonchunhyang University)
Yun, Bong Han (Department of Life Science, Soonchunhyang University)
Bang, In-Chul (Department of Life Science, Soonchunhyang University)
Publication Information
Korean Journal of Ichthyology / v.33, no.2, 2021 , pp. 45-56 More about this Journal
Abstract
A male, presumed to be an intergeneric hybrid between Tanakia lanceolata and Rhodeus pseudosericeus, was collected in the Boryeong Daecheoncheon Stream flowing into the Yellow Sea in the Republic of Korea. Morphological and molecular phylogenetic analyses were performed to discriminate the definite origin of the estimated natural hybrid. As a result of the morphological analysis, the color of the dorsal and anal fin rays edges of the natural hybrid individual, the upper and lower body colors followed the morphological characteristics of T. lanceolata, and that blue longitudinal stripe in the center of the caudal peduncle, the incomplete lateral line, and the barbels absent followed the morphological characteristics of R. pseudosericeus. In addition, as a result of the cytochrome b (cytb) gene analysis of mitochondrial DNA (mtDNA), the natural hybrid showed a nucleotide sequence similarity of 99.82 to 100% with T. lanceolata, and the maternal species was identified as T. lanceolata. As a result of the recombination activating gene 1 (rag1) gene analysis of nuclear DNA (nDNA), the natural hybrid showed double peaks pattern reflecting both the single nucleotide polymorphism sites (38 bp) between T. lanceolata and R. pseudosericeus, and the paternal species was identified as R. pseudosericeus. Therefore, a natural hybrid estimated male of Acheilognathinae analyzed in this study was found to be an intergeneric hybrid between a female T. lanceolata and a male R. pseudosericeus.
Keywords
Tanakia lanceolata; Rhodeus pseudosericeus; intergeneric hybrid; cytb; rag1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wilson, A.C., R.L. Cann, S.M. Carr, M. George and U.B. Gyllensten. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc., 26: 375-400. https://doi.org/10.1111/j.1095-8312.1985.tb02048.x.   DOI
2 Candolin, U. and J.D. Reynolds. 2002. Why do males tolerate sneakers? Tests with the European bitterling, Rhodeus sericeus. Behav. Ecol. Sociobiol., 51: 146-152. https://doi.org/10.1007/s00265-001-0422-6.   DOI
3 Witkowski, A., J. Kotusz, K. Wawer, J. Stefaniak, M. Popiolek and J. Blachuta. 2015. A natural hybrid of Leuciscus leuciscus (L.) and Alburnus alburnus (L.) (Osteichthyes: Cyprinidae) from the Bystrzyca River (Poland). Annal. Zool., 65: 287-293. https://doi.org/10.3161/00034541anz2015.65.2.010.   DOI
4 Segherloo, I.H., E. Normandeau, L. Benestan, C. Rougeux, G. Cote, J.S. Moore, N. Ghaedrahmati, A. Abdoli and L. Bernatchez. 2018. Genetic and morphological support for possible sympatric origin of fish from subterranean habitats. Sci. Rep., 8: 1-13. https://doi.org/10.1038/s41598-018-20666-w.   DOI
5 Soric, V.M. 2004. A natural hybrid of Leuciscus cephalus and Alburnus alburnus(Pisces, Cyprinidae) from the Ibar River, Western Serbia. Arch. Biol. Sci., 56: 23-32. https://doi.org/10.2298/abs0402023s.   DOI
6 Stephens, M. and P. Donnelly. 2003. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet., 73: 1162-1169. https://doi.org/10.1086/379378.   DOI
7 Edgar, R. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 32: 1792-1797. https://doi.org/10.1093/nar/gkh340.   DOI
8 Ronquist, F., M. Teslenko, P. van der Mark, D.L. Ayres, A. Darling, S. Hohna, B. Larget, L. Liu, M.A. Suchard and J.P. Huelsenbeck. 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol., 61: 539-542. https://doi.org/10.1093/sysbio/sys029.   DOI
9 Avise, J.C. 1986. Mitochondrial DNA and the evolutionary genetics of higher animals. Philos. Trans. R. Soc. Lond. B., 312: 325-342. https://doi.org/10.1098/rstb.1986.0011.   DOI
10 Brown, W.M., M. George and A.C. Wilson. 1979. Rapid evolution of animal mitocondrial DNA. Proc. Natl. Acad. Sci., 76: 1967-1971. https://doi.org/10.1073/pnas.76.4.1967.   DOI
11 Chae, B.S., H.B. Song and J.Y. Park. 2019. A field guide to the freshwater fishes of Korea. LG Evergreen Foundation, Seoul, Korea, 355pp.
12 Duyvene de Wit, J.J. 1964. Hybridization experiments in acheilognathine fishes (Cyprinidae, Teleostei). Crossings between female Tanakia tanago, Rhodeus ocellatus, and Acheilognathus limbatus, and male Acheilognathus limbatus. Copeia, 1964: 156-160. https://doi.org/10.2307/1440844.   DOI
13 Fricke, R., W.N. Eschmeyer and R. Van der Laan. 2020. Eschmeyer's catalog of fishes: genera, species, references. Available at: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed 7 Dec. 2020).
14 Genovart, M. 2009. Natural hybridization and conservation. Biodivers. Conserv., 18: 1435-1439. https://doi.org/10.1007/s10531-008-9550-x.   DOI
15 Hauswirth, W.W. and D.A. Clayton. 1985. Length heterogeneity of a conserved displacement-loop sequence in human mitochondrial DNA. Nucleic Acids Res., 13: 8093-8104. https://doi.org/10.1093/nar/13.22.8093.   DOI
16 Ueda, T. and Y. Ueda. 2018. Chromosomal studies of the hybrid between female Rhodeus ocellatus ocellatus and male Rhodeus atremius fangi in bitterlings(Teleostei: Cypriniformes: Acheilognathinae). Natural Resources, 9: 17-22. https://doi.org/10.4236/nr.2018.91002.   DOI
17 Hubbs, C.L. 1955. Hybridization between fish species in nature. Syst. Zool., 4: 1-20. https://doi.org/10.2307/2411933.   DOI
18 Jansson, H., I. Holmgren, K. Wedin and T. Andersson. 1991. High frequency of natural hybrids between Atlantic salmon, Salmo salar L., and brown trout, S. trutta L., in a Swedish river. J. Fish Biol., 39: 343-348. https://doi.org/10.1111/j.1095-8649.1991.tb05096.x.   DOI
19 Kim, B.S., E.J. Kang, H. Jang and I.S. Park. 2012. Morphometric traits and cytogenetic analysis in induced cross and reciprocal hybrid between Rhodeus uyekii and R. notatus. Korean J. Ichthyol., 24: 51-159.
20 Kim, H.S., S.W. Yun, J.G. Ko and J.Y. Park. 2014. Occurrence of a natural intergeneric hybrid between Rhodeus pseudosericeus and Acheilognathus signifer (Pisces: Cyprinidae) from the Namhangang (river), Korea. Korean J. Ichthyol., 26: 153-158.
21 Pinheiro, A.P.B., R.M.C. Melo, D.F. Teixeira, J.L.O. Birindelli, D.C. Carvalho and E. Rizzo. 2019. Integrative approach detects natural hybridization of sympatric lambaris species and emergence of infertile hybrids. Sci. Rep., 9: 4333. https://doi.org/10.1038/s41598-019-40856-4.   DOI
22 Song, S., Z.F. Pursell, W.C. Copeland, M.J. Longley, T.A. Kunkel and C.K. Mathews. 2005. DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. Proc. Natl Acad. Sci. USA., 102: 4990-4995. https://doi.org/10.1073/pnas.0500253102.   DOI
23 Kim, S.Y., C.B. Kim, I.S. Kim, J.Y. Park and H.Y. Park. 2002. Molecular systematics of Korean cobitids based on mitochondrial cytochrome b sequence. Korean J. Biol. Sci., 6: 45-51. https://doi.org/10.1080/12265071.2002.9647632.   DOI
24 Kim, C.H., W.O. Lee, Y.J. Kang and J.M. Baek. 2010. Occurrence of a natural intergeneric hybrid, Rhodeus uyekii×Acheilognathus signifer(Pisces: Cyprinidae) from Jojongcheon Bukhan River. Korean J. Ichthyol., 22: 225-229.
25 Kim, H.S. and J.Y. Park. 2020. Spawning characteristics of Hangang bitterling, Rhodeus pseudosericeus (Pisces: Acheilognathinae) in the host mussel with Glochidia. Korean J. Ichthyol., 32: 63-69. https://doi.org/10.35399/ISK.32.2.4.   DOI
26 Kim, H.S., S.W. Yun, H.T. Kim and J.Y. Park. 2015. Occurrence of a natural hybrid between Acheilognathus signifer and A. lanceolatus(Pisces: Cyprinidae). Korean J. Ichthyol., 27: 199-204.
27 Kim, H.S., J.D. Yoon, H. Yang, H.S. Choi and J.H. Lee. 2017. Reproductive characteristics of Rhodeus pseudosericeus (Pisces: Acheilognathinae) in the Heukcheon, Namhangang (River), Korea. Korean J. Ichthyol., 29: 235-243.
28 Kwak, Y.H., K.Y. Kim, K.S. Kim and H.Y. Song. 2020. Occurrence of a natural interspecific hybrid between Rhodeus pseudosericeus and R. notatus in Sangcheon Stream of the Han River, Korea. Korean J. Ecol. Environ., 53: 275-285. https://doi.org/10.11614/ksl.2020.53.3.275.   DOI
29 Lanfear, R., P.B. Frandsen, A.M. Wright, T. Senfeld and B. Calcott. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol., 34: 772-773. https://doi.org/10.1093/molbev/msw260.   DOI
30 Nikoljukin, M.J. 1972. Distant hybridization in acipenseridae and teleostei, theory and practice. Moskava, 335pp.
31 Smith, C., M. Reichard, P. Jurajda and M. Przybylski. 2004. The reproductive ecology of the European bitterling (Rhodeus sericeus). J. Zool., Lond., 262: 107-124. https://doi.org/10.1017/s0952836903004497.   DOI
32 Kanoh, Y. 2000. Reproductive success associated with territoriality, sneaking, and grouping in male rose bitterings, Rhodeus ocellatus (Pisces: Cyprinidae). Environ. Biol. Fishes, 57: 143-154. https://doi.org/10.1023/A:1004585405848.   DOI
33 Li, F., T.Y. Liao, R. Arai and L. Zhao. 2017. Sinorhodeus microlepis, a new genus and species of bitterling from China (Teleostei: Cyprinidae: Acheilognathinae). Zootaxa, 4353: 69-88. https://doi.org/10.11646/zootaxa.4353.1.4.   DOI
34 Park, J.M. and K.H. Han. 2019. Early life history characteristics of an induced hybrid between Rhodeus uyekii and Rhodeus ocellatus. Korean J. Fish. Aquat. Sci., 52: 408-417. https://doi.org/10.5657/KFAS.2019.0408.   DOI
35 Rambaut, A. 2018. FigTree. Version 1.4.4. Available at: http://tree.bio.ed.ac.uk/software-/figtree (accessed 17 Sep. 2019).
36 Rambaut, A., A.J. Drummond, D. Xie, G. Baele and M.A. Suchard. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol., 67: 901. https://doi.org/10.1093/sysbio/syy032.   DOI
37 Ross, M.R. and T.M. Cavender. 1981. Morphological analyses of four experimental intergeneric cyprinid hybrid crosses. Copeia., 2: 377-387. https://doi.org/10.2307/1444226.   DOI
38 Scribner, K.T., K.S. Page and M.L. Bartron. 2000. Hybridization in freshwater species: a review of case studies and cytonuclear methods of biological inference. Rev. Fish Biol. Fish., 10: 293-323. https://doi.org/10.1023/A:1016642723238.   DOI
39 Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033.   DOI
40 Stephens, M., N.J. Smith and P. Donnelly. 2001. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet., 68: 978-989. https://doi.org/10.1086/319501.   DOI
41 Nelson, J.S., T.C. Grande and M.V.H. Wilson. 2016. Fishes of the world, 5th ed. John Wiley & Sons Inc., Hoboken, New Jersey, U.S.A., 707pp.
42 Hata, H., Y. Uemura, K. Ouchi and H. Matsuba. 2019. Hybridization between an endangered freshwater fish and an introduced congeneric species and consequent genetic introgression. PloS One, 14: e0212452. https://doi.org/10.1371/journal.pone.0212452.   DOI
43 Hubbs, C.L and K.F. Lagler. 2004. Fishes of the Great Lakes region. Unversity of Michigan Press, Ann Arbor, U.S.A., pp. 29-40. https://doi.org/10.3998/mpub.17658.
44 Kawamura, K. and K. Hosoya. 2000. Masculinization mechanism of hybrids in bitterlings(Teleostei: Cyprinidae). J. Hered., 91: 464-473. https://doi.org/10.1093/jhered/91.6.464.   DOI