• Title/Summary/Keyword: photo current

Search Result 415, Processing Time 0.035 seconds

Gate Drive Circuit of a Classic Converter for a Switched Reluctance Motor (Switched Reluctance Motor용 Classic Converter의 Gate 구동회로)

  • Lim, J.Y.;Cho, K.Y;Shin, D.J.;Kim, C.H.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.325-327
    • /
    • 1995
  • A new gate drive circuit of classic converter for a switched reluctance motor is presented. Conventional gate drive circuit usually consists of the isolated power supplies and signal transferring devices for isolation, such as photo coupler, pulse transformer, and gate drive chips. The proposed gate drive circuit consists of resistors, capacitors, and zenor diodes without isolated power supplies, that make the drive circuit simple and reduce the material cost. The operational modes are classified and analyzed. The characteristics of the phase current and the gate signal of upper switches is investigated with the variation of duty ratio through the experiments.

  • PDF

A Droop Control for the Autonomous Operation of DC Distribution System using Grid-tied Converter and Energy Storage (직류급전 시스템의 Autonomous Operation을 위한 교류연계장치와 에너지 저장의 Droop Control)

  • Lee, Ji-Heon;Cha, Min-Young;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.32-33
    • /
    • 2010
  • This paper describes a droop control method for the autonomous operation of DC distribution system using distributed generations and energy storage. The method suppress the circulating current, and each unit could be controlled autonomously without communication system. Detailed model of wind power generation, photo-voltaic generation, fuel-cell generation and battery was implemented with the user-defined model of PSCAD/EMTDC software that is coded with C-language. The simulation and experimental results confirms that the proposed DC distribution system make it feasible to provide power to the load stably and verify effectiveness of the proposed method.

  • PDF

Development of Mobile 3D Terrain Viewer with Texture Mapping of Satellite Images

  • Kim, Seung-Yub;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.351-356
    • /
    • 2006
  • Based on current practical needs for geo-spatial information on mobile platform, the main theme of this study is a design and implementation of dynamic 3D terrain rendering system using spaceborne imagery, as a kind of texture image for photo-realistic 3D scene generation on mobile environment. Image processing and 3D graphic techniques and algorithms, such as TIN-based vertex generation with regular spacing elevation data for generating 3D terrain surface, image tiling and image-vertex texturing in order to resolve limited resource of mobile devices, were applied and implemented by using graphic pipeline of OpenGL|ES (Embedded System) API. Through this implementation and its tested results with actual data sets of DEM and satellite imagery, we demonstrated the realizable possibility and adaptation of complex typed and large sized 3D geo-spatial information in mobile devices. This prototype system can be used to mobile 3D applications with DEM and satellite imagery in near future.

Inverted structure perovskite solar cells: A theoretical study

  • Sahu, Anurag;Dixit, Ambesh
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1583-1591
    • /
    • 2018
  • We analysed perovskite $CH_3NH_3PbI_{3-x}Cl_x$ inverted planer structure solar cell with nickel oxide (NiO) and spiroMeOTAD as hole conductors. This structure is free from electron transport layer. The thickness is optimized for NiO and spiro-MeOTAD hole conducting materials and the devices do not exhibit any significant variation for both hole transport materials. The back metal contact work function is varied for NiO hole conductor and observed that Ni and Co metals may be suitable back contacts for efficient carrier dynamics. The solar photovoltaic response showed a linear decrease in efficiency with increasing temperature. The electron affinity and band gap of transparent conducting oxide and NiO layers are varied to understand their impact on conduction and valence band offsets. A range of suitable band gap and electron affinity values are found essential for efficient device performance.

A Study on the Crack Inspection Model of Old Buildings Based on Image Classification (이미지 분류 기반 노후 건축물 균열 검사 모델 연구)

  • Chae, Jong-Taek;Lee, Ung-Kyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.331-332
    • /
    • 2023
  • With the aging of buildings, the number and importance of regular inspections of buildings are increasing. The current safety inspection goes through a procedure in which a skilled technician visits an old building, visually checks it, takes a photo, and finally organizes and judges it at the office. For this, field personnel and analysis and review personnel are required. Since the inspection procedure includes taking pictures, a huge amount of data has been accumulated from the time digital photos were used to the present. When a model that can check cracks outside a building is developed using these data, manpower and time required can be greatly reduced. Therefore, this study aims to create a model for classifying cracks that occur outside the building through the artificial intelligence method. The created model can be used as a basic model for determining cracks only by external photography in the future, and furthermore, it can be used as basic data for calculating the size and width of cracks.

  • PDF

GQD layers for Energy-Down-shift layer on silicon solar cells by kinetic spraying method

  • Lee, Gyeong-Dong;Park, Myeong-Jin;Kim, Do-Yeon;Kim, Su-Min;Gang, Byeong-Jun;Kim, Seong-Tak;Kim, Hyeon-Ho;Lee, Hae-Seok;Gang, Yun-Muk;Yun, Seok-Gu;Hong, Byeong-Hui;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.422.1-422.1
    • /
    • 2016
  • Graphene quantum dots (GQDs), a new kind of carbon-based photo luminescent nanomaterial from chemically modified graphene oxide (CMGO) or chemically modified graphene (CMG), has attracted extensive research attention in the last few years due to its outstanding chemical, optical and electrical properties. To further extended its potential applications as optoelectronic devices, solar cells, bio and bio-sensors and so on, intensive research efforts have been devoted to the CMG. However, the CMG, a suspension of aqueous, have problematic since they are prone to agglomeration after drying a solvent. In this study, we synthesized the GQDs from graphite and deposited on silicon substrate by kinetic spray. The photo luminescent properties of deposited GQD films were analyzed and compared with initial GQDs suspension. In addition, its carbon properties were investigated with GQDs solution properties. The properties of deposited GQD films by kinetic spray were similar to that of the GQDs suspension in water. We could provide a pathway for silicon-based silicon based device applications. Finally, the well-adjusted GQD films with photo luminescence effects will show Energy-Down-Shift layer effects on silicon solar cells. The GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density (Jsc) was enhanced by about 2.94 % (0.9 mA/cm2) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  • PDF

Risk Assessment of Semiconductor PR Process based on Frequency Analysis of Flammable Material Leakage (반도체 PR 공정의 인화성 물질 누출 빈도분석을 통한 위험성 평가)

  • Park, Myeongnam;Chun, Kwang-Su;Yi, Jinseok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.1-10
    • /
    • 2021
  • Semiconductor Photo Resist (PR) automation equipment uses a mixture of several flammable substances, and when it leaks during the process, it can lead to various accidents, therefore, risk assessment is necessary. This study analyzed the frequency of leakage of Acetone and PGMEA used in PR automation equipment and the frequency at which such leakage could lead to a fire accident through the frequency analysis method, and evaluated the need for additional risk reduction measures in the current facility. Based on the process leak data and ignition probability data of IOGP, leak frequency analysis and ignition probability were derived, and the frequency of actual fire accidents was analyzed by combining them. The frequency of material leakage in semiconductor PR process is 7.30E-03/year, and fire accidents can occur by acetone that exists above the flash point when the material is leaked, the frequency was calculated at the level of 1.24E-05/year. According to the UK HSE, for a major accident occurring with a frequency of 1.24E-05/year, it is defined as "Broadly Acceptable", a level that does not require additional measures for risk reduction when it causes 7 or less deaths, and due to the process operated by two people, no additional risk reduction are required.

Thin film growth of ε-Ga2O3 and photo-electric properties of MSM UV photodetectors (ε-Ga2O3 박막 성장 및 MSM UV photodetector의 전기광학적 특성)

  • Park, Sang Hun;Lee, Han Sol;Ahn, Hyung Soo;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.179-186
    • /
    • 2019
  • In this study, we investigated the structural properties of $Ga_2O_3$ thin films and the photo-electrical properties of metal-semiconductor-metal (MSM) photodetectors deposited by Ti/Au electrodes. $Ga_2O_3$ thin films were grown at different temperatures using metal organic chemical vapor deposition (MOCVD). The crystal phase of $Ga_2O_3$ changed from ${\varepsilon}$-phase to ${\beta}$-phase depending on the growth temperature. The crystal structure of ${\varepsilon}-Ga_2O_3$ was confirmed by X-ray diffraction (XRD) analysis and the formation mechanism of crystal structure was discussed by scanning electron microscopy (SEM) images. From the results of current-voltage (I-V) and time-dependent photoresponse characteristics under the illumination of external lights, we confirmed that the MSM photodetector fabricated by ${\varepsilon}-Ga_2O_3$ showed much better photocurrent characteristics in the 266 nm UV range than in the visible range.

Electro-Optical Characteristics and Analysis of 1×1 mm2 Large-Area InGaN/GaN Green LED (1×1 mm2 대면적 녹색 LED의 전기 광학적 특성 분석)

  • Jang, L.W.;Jo, D.S.;Jeon, J.W.;Ahn, Tae-Young;Park, M.J.;Ahn, B.J.;Song, J.H.;Kwak, J.S.;Kim, Jin-Soo;Lee, I.H.;Ahn, H.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.288-293
    • /
    • 2011
  • We investigated the effects of piezoelectric field on the electro-absorption characteristics in InGaN/GaN multiple-quantum well (MQW) green light emitting diodes (LED). Double crystal X-ray diffraction measurement was performed to study the crystalline property and indium (In) composition in the MQW active layer. To measure the electro-luminescence and electro-reflectance (ER) spectroscopy, we fabricated the $1{\times}1\;mm^2$ large-area green LED chip. The piezoelectric field inside the LED structure was evaluated from the Vcomp in active layer by the ER spectra. Finally, we analyzed the electro-absorption characteristics of the green LED by using the photo-current spectroscopy.

The Characteristic Improvement of Photodiode by Schottky Contact (정류성 접합에 의한 광다이오드의 특성 개선)

  • Hur Chang-wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1448-1452
    • /
    • 2004
  • In this paper, a photodiode capable of obtaining a sufficient photo/ dark current ratio at both a forward bias state and a reverse bias state is proposed. The photodiode includes a glass substrate, an Cr thin film formed as a lower electrode over the glass substrate, Cr silicide thin film(∼l00$\AA$) ) formed as a schottky barrier over the Cr thin film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the Cr silicide thin film. Transparent conduction film ITO (thickness 100nm) formed as an upper electrode over the hydro-generated amorphous silicon film is then deposited in pure argon at room temperature for the Schottky contact and light window. The high quality Cr silicide thin film using annealing of Cr and a-Si:H is formed and analyzed by experiment. We have obtained the film with a superior characteristics. The dark current of the ITO/a-Si:H Schottky at a reverse bias of -5V is ∼3$\times$IO-12 A/un2, and one of the lowest reported, hitherto. AES(Auger Electron Spectroscophy) measurements indicate that this notable improvement in device characteristics stems from reduced diffusion of oxygen, rather than indium, from the ITO into the a-Si:H layer, thus, preserving the integrity of the Schottky interface. The spectral response of the photodiode for wavelengths in the range from 400nm to 800nm shows the expected behavior whereby the photocurrent is governed by the absorption characteristics of a-Si:H.